A Potential Rosetta Stone of High Temperature Superconductivity
The Science
High purity single crystals of superconducting material (CeCoIn5) with the highest observed superconducting temperature for a cerium-based material enabled investigation of the relationship among magnetism, superconductivity, and disorder by strategic substitution of certain atoms with others (dopants) in the superconductor.
The Impact
Just as the Rosetta Stone has the same message written in three different scripts giving scholars key insights into ancient languages, the subject material (CeCoIn5), by virtue of its high purity, allows study of the interplay between magnetism, superconductivity, and disorder in three different classes of unconventional superconductors (cuprates, pnictides, and heavy fermions). The versatile model system could help researchers decipher the complex emergent phenomena in different classes of unconventional superconductors and in the development of a complete theory for the high-temperature superconductivity.
Summary
Superconductivity enables the flow of electricity without any loss of energy, but this extremely low temperature phenomenon disappears above a critical temperature (Tc). Since the discovery of a new class of materials in 1986, known as unconventional superconductors, that preserves superconductivity at temperatures much higher than previously known conventional superconductors, the scientific community has been on the quest to learn about the complete mechanisms for the unconventional superconductivity to enable the design of superconducting materials that operate near room temperature.
In general, materials discovery for higher Tc superconductors has been pursued by controlled doping (strategic replacement of certain elements with others) of a starting material with an already high Tc. Although this approach seems to work to certain extent, predicting the superconducting behavior of newly synthesized materials remains a major challenge due to several complexities including the disorder in the crystalline materials.
An international team led by scientists at Los Alamos National Laboratory has demonstrated that the compound CeCoIn5 with incredibly high purity and the highest superconducting temperature for a cerium-based material could serve as an ideal system to investigate the effect of disorder in the materials. Magnetic fluctuations, a driver for unconventional superconductivity, are indeed observed in pristine CeCoIn5, but locally disappear in the material doped with a small amount of cadmium (replacing indium). Surprisingly, the superconducting transition temperature of the doped material remained nearly unaffected.
This work shows that static 'droplets' of magnetism form around the doped atoms, but they do not impact the superconductivity in this material. It is expected that further research on this material will enable deciphering of other aspects of unconventional superconductivity that could pave the way to the development of a more complete theory for this complex emergent phenomenon.
Funding
DOE Office of Science, Basic Energy Sciences program. International support for co-authors was provided by Canada, France, Switzerland, Korea, and China.
Publications
S. Seo, X. Lu, J.-X. Zhu, R. R. Urbano, N. Curro, E. D. Bauer, V. A. Sidorov, T. Park, Z. Fisk, and J. D. Thompson, “Disorder in quantum critical superconductors.” Nature Physics 10, 120 (2014).
S. Gerber, M. Bartkowiak, J.L. Gavilano, E. Ressouche, N. Egetenmeyer, C. Niedermayer, A.D. Bianchi, R. Movshovich, E.D. Bauer, J.D. Thompson, and M. Kenzelmann, “Switching of magnetic domains reveals spatially inhomogeneous superconductivity.” Nature Physics 10, 126-129 (2014).
Contact Information
Kristin Manke
kristin.manke@science.doe.gov
Media Contact
More Information:
http://www.science.doe.govAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….
Climate change can cause stress in herring larvae
The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…
Making high-yielding rice affordable and sustainable
Plant biologists show how two genes work together to trigger embryo formation in rice. Rice is a staple food crop for more than half the world’s population, but most farmers…