Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

This image shows hydrodynamic cavitation through a venturi tube. Credit: Hitoshi Soyama

Cavitation – the formation, growth and subsequent collapse of microbubbles – produces high, localized energy which can be used in chemical processes for treating water and the pretreatment of biomass.

The research team found that the conventional cavitation method of applying ultrasonic energy was not strong enough, so they proposed using hydrodynamic cavitation instead.

In the proposed method, test water is passed through a constriction tube. Hydrodynamic cavitation is then produced by the decrease of pressure due to the increase of flow velocity.

The team found that the aggressive intensity of hydrodynamic cavitation was optimized with an increase of pressure at the bubble collapse region.

Although most researchers believe that an enlarged cavitation area produces aggressive intensity, by contrast, it seems a rise in aggressive intensity can occur with a reduced cavitation area. In the research experiments, the size of the cavitating region was reduced by varying the upstream and downstream pressures.

The team has demonstrated the enhancement of cavitation aggressive intensity by a factor of about 100 by optimizing pressure at the region, measuring acoustic power at cavitation bubble collapse, and luminescence as a function of the pressure.

This method can be useful for practical applications, as it does not need additional power, but the aggressive intensity can be increased simply by controlling a valve downstream to the cavitating region.

Media Contact

PR Division, School of Engineering
eng-pr@eng.tohoku.ac.jp

 @TohokuUniPR

http://www.tohoku.ac.jp/en/ 

Media Contact

PR Division, School of Engineering EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…