CCNY physicists master unexplored electron property
Now City College of New York physicists led by Vinod Menon have demonstrated how to manipulate the “valley” property using light by placing two-dimensional semiconductors in a light trapping structure called microcavity.
This gave rise to half-light-half matter quasi-particles which have the fingerprint of the “valley” property. These quasi-particles were then optically controlled using a laser to access the electrons occupying specific “valley.”
The research appears in the latest issue of Nature Photonics and is a major step towards realization of “valleytronic” devices for logic gates.
“Observing this property in traditional semiconductors was not easy. However with the advent of the new class of two-dimensional semiconductors, this property became accessible to manipulation,” said Zheng Sun, a graduate student in Menon's research group and lead author of the paper.
###
Other researchers included CCNY graduate students, Jie Gu and Christopher Considine; undergraduate Michael Dollar, postdoctoral researcher Biswanath Chakraborty, Zav Shotan, and Xiaoze Liu; physics professor Pouyan Ghaemi and his postdoctoral researcher Areg Ghazaryan; and Stephane Kena-Cohen (Ecole Polytechnic, Montreal, Canada) also participated in the study.
The work was supported by the NSF through the EFRI 2-DARE program, the ECCS division, the Columbia-CCNY NSF MRSEC Center, the US Army Research Office and a Discovery grant from the Natural Sciences and Engineering Research Council of Canada.
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…