Graphene microphone outperforms traditional nickel and offers ultrasonic reach

Generic microphone on sound desk is shown. Credit: Pixabay 2015 CC0

The researchers, based at the University of Belgrade, Serbia, created a vibrating membrane – the part of a condenser microphone which converts the sound to a current – from graphene, and were able to show up to 15 dB higher sensitivity compared to a commercial microphone, at frequencies up to 11 kHz.

The results are published today, 27th November 2015, in the journal 2D Materials.

“We wanted to show that graphene, although a relatively new material, has potential for real world applications” explains Marko Spasenovic, an author of the paper. “Given its light weight, high mechanical strength and flexibility, graphene just begs to be used as an acoustic membrane material.”

The graphene membrane, approximately 60 layers thick, was grown on a nickel foil using chemical vapour deposition, to ensure consistent quality across all the samples.

During membrane production, the nickel foil was etched away and the graphene membrane placed in the same housing as a commercial microphone for comparison. This showed a 15 dB higher sensitivity than the commercial microphone.

The researchers also simulated a 300-layer thick graphene membrane, which shows potential for performance far into the ultrasonic part of the spectrum.

“The microphone performed as well as we hoped it would” adds Spasenovic. “A thicker graphene membrane theoretically could be stretched further, enabling ultrasonic performance, but sadly we're just not quite there yet experimentally.”

“At this stage there are several obstacles to making cheap graphene, so our microphone should be considered more a proof of concept” concludes Spasenovic. “The industry is working hard to improve graphene production – eventually this should mean we have better microphones at lower cost.”

###

Contact

For further information, a full draft of the journal paper, or to talk with one of the researchers, contact IOP Senior Press Officer, Steve Pritchard: Tel: 0117 930 1032 E-mail: steve.pritchard@iop.org. For more information on how to use the embargoed material above, please refer to our embargo policy.

A copy of the paper can be found here: http://www.dropbox.com/sh/hofa7oxwdpainez/AACEpUStQe3h3pIuzV50pthJa?dl=0

IOP Publishing Journalist Area

The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos

Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email the IOP Publishing Press team at ioppublishing.press@iop.org, with your name, organisation, address and a preferred username.

Multilayer graphene condenser microphone

The published version of the paper 'Multilayer graphene condenser microphone' (2D Mater. 2 045013) will be freely available online from Friday 27 November.

It will be available at http://iopscience.iop.org/2053-1583/2/4/045013.

2D Materials

2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.

IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.

Go to ioppublishing.org or follow us @IOPPublishing.

The Institute of Physics

The Institute of Physics is a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

Media Contact

Steve Pritchard
steve.pritchard@iop.org
44-117-930-1032

 @IOPPublishing

http://ioppublishing.org/ 

Media Contact

Steve Pritchard EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…