High-speed march through a layer of graphene
Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists at the Laboratory for Attosecond Physics (LAP) of the Max Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-Universität (LMU) have made simulations of processes that take place when electrons in a layer of carbon atoms interact with strong laser light.
The purpose of these simulations is to gain insight into light-matter-interactions in the microcosm. A better understanding of the underlying physical processes could lead to light-wave driven electronics that would operate at light frequencies, which is a hundred thousand times faster than state-of-the-art technologies. Graphene with its exceptional properties is considered to be very well suited as an example system for prototype experiments.
The closer we observe the motion of electrons, the better we understand their interaction with light. Many phenomena that arise in condensed matter due to strong-field light-matter interaction are not yet fully understood.
As the underlying processes occur within femto- or even attoseconds, it is difficult to access this intra-atomic cosmos: a femtosecond is a millionth of a billionth of a second; an attosecond is even a thousand times shorter. Experimental methods that shall cope with this challenge are at a development stage. However, it is possible to investigate these processes with the help of numerical simulations.
The team of scientists from LAP and Georgia State University has calculated what happens to electrons in graphene interacting with an intense laser pulse.
The laser field excites and displaces electrons, changing thus the charge density distribution. During this process, an extremely short electron pulse is scattered off the probe. The diffraction map of these matter waves reflects how the electron density distribution inside the graphene layer has been altered because of the laser pulse.
These simulations have revealed complex relations between the excitation of valence electrons by light and their subsequent ultrafast motion inside and between the carbon atoms in the graphene layer. Valence electrons are weakly bound and shared among neighbouring atoms. The scientists investigated their motion by identifying microscopic volumes that represent various chemical bonds and analysing the electric charge contained in these volumes.
During a laser pulse, there is a significant redistribution of the charge; at the same time, the displacement of the electrons caused by the electromagnetic field of the laser pulse is very small, less than a picometre (10 to the minus 12 m). In addition to that, the calculations showed that the light-induced electric current has an inhomogeneous microscopic distribution, flowing along the chemical bonds between the carbon atoms.
These simulations should assist new ultrafast electron diffraction measurements. “We will possibly detect new phenomena, and perhaps observe deviations from our predictions”, project leader Vladislav Yakovlev points out. “But we are pretty sure that quite some fundamental physics is waiting to be observed in challenging but feasible atomic-scale measurements.” [Thorsten Naeser/Olivia Meyer-Streng]
Original Publication:
Vladislav S. Yakovlev, Mark I. Stockman, Ferenc Krausz & Peter Baum
Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter
Scientific Reports, 28. September 2015, doi: 10.1038/srep14581
Contact:
Dr. Peter Baum
Max Planck Institute of Quantum Optics
Ludwig-Maximilians-Universität Munich
Am Coulombwall 1, 85748 Garching
Phone: +49 (0)89 / 289 – 14102
E-mail: peter.baum@lmu.de
Dr. Vladislav Yakovlev
Center for Nano-Optics
Georgia State University
Atlanta, GA 30303, USA
Phone: +1-404-413-6099
E-mail: vyakovlev@gsu.edu
Prof. Dr. Ferenc Krausz
Chair of Experimental Physics,
Ludwig-Maximilians-Universität Munich
Laboratory for Attosecond Physics
Director at Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 – 600
Telefax: +49 (0)89 32 905 – 649
E-mail: ferenc.krausz@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de
Media Contact
More Information:
http://www.mpq.mpg.de/All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…