Metal leads to the desired configuration
Dye-sensitized solar cells have been considered a sustainable alternative to conventional solar cells for many years, even if their energy yield is not yet fully satisfactory. The efficiency can be increased with the use of tandem solar cells, where the dye-sensitized solar cells are stacked on top of each other.
The way in which the dye, which absorbs sunlight, is anchored to the semiconductor plays a crucial role in the effectiveness of these solar cells. However, the anchoring of the dyes on nickel oxide surfaces – which are particularly suitable for tandem dye-sensitized cells – is not yet sufficiently understood.
Binding on surfaces
Over the course of an interdisciplinary collaboration, scientists from the Swiss Nanoscience Institute and the Departments of Physics and Chemistry at the University of Basel investigated how single bipyridine molecules bind to nickel oxide and gold surfaces.
Bipyridine crystals served as an anchor molecule for dye-sensitized cells on a semiconductor surface. This anchor binds the metal complexes, which in turn can then be used to bind the various dyes.
With the aid of scanning probe microscopes, the investigation determined that initially the bipyridine molecules bind flat to the surface in their trans configuration. The addition of iron atoms and an increase in temperature cause a rotation around a carbon atom in the bipyridine molecule and thus leads to the formation of the cis configuration.
“The chemical composition of the cis and trans configuration is the same, but their spatial arrangement is very different. “The change in configuration can be clearly distinguished on the basis of scanning probe microscope measurements,” confirms experimental physicist Professor Ernst Meyer.
Metal complexes in a modified configuration
This change in spatial arrangement is the result of formation of a metal complex, as confirmed by the scientists through their examination of the bipyridine on a gold surface.
During the preparation of the dye-sensitized solar cells, these reactions take place in a solution. However, the examination of individual molecules and their behavior is only possible with the use of scanning probe microscopes in vacuum.
“This study allowed us to observe for the first time how molecules that are firmly bound to a surface change their configuration,” summarizes Meyer. ”This enables us to better understand how anchor molecules behave on nickel oxide surfaces.”
Professor Ernst Meyer, University of Basel, Department of Physics, +41 61 207 37 24, Email: ernst.meyer@unibas.ch
Sara Freund, Rémy Pawlak, Lucas Moser, Antoine Hinaut, Roland Steiner, Nathalie Marinakis, Edwin C. Constable, Ernst Meyer, Catherine E. Housecroft, and Thilo Glatzel
Transoid-to-Cisoid Conformation Changes of Single Molecules on Surfaces Triggered by Metal Coordination
ACS Omega (2018)
https://www.unibas.ch/en/News-Events/News/Uni-Research/Metal-leads-to-the-desire…
Media Contact
More Information:
http://www.unibas.chAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….
Climate change can cause stress in herring larvae
The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…
Soil ecosystem more resilient when land managed sustainably
Compared to intensive land use, sustainable land use allows better control of underground herbivores and soil microbes. As a result, the soil ecosystem is more resilient and better protected from…