New dynamic dependency framework may lead to better neural social and tech systems models

In a paper published recently in Nature Physics, Bar-Ilan University Prof. Havlin, and a team of researchers, including Stefano Boccaletti, Ivan Bonamassa, and Michael M. Danziger, present a dynamic dependency framework that can capture interdependent and competitive interactions between dynamic systems which are used to study synchronization and spreading processes in multilayer networks with interacting layers. Main results in this image. (Top Left) Phase diagram for two partially competitive Kuramoto models with regions of multistability. (Top Right) Theoretical and numerical results for the ow in interdependent SIS epidemics (Erdos-Renyi graphs, average degree = 12). (Bottom Left) Path-dependent (awakening) transitions in asymmetrically coupled SIS dynamics. (Bottom Right) Critical scaling of bottlenecks (ghosts in saddle-node bifurcations) above the hybrid transitions in interdependent dynamics Credit: Prof. Shlomo Havlin and team

In 2010 substantial progress was made when the theory of percolation on interdependent networks was introduced by Prof. Shlomo Havlin and a team of researchers from the Department of Physics at Bar-Ilan University in a study published in Nature.

This model showed that when nodes in one network depend on nodes in another to function, catastrophic cascades of failures and abrupt structural transitions arise, as was observed in the electrical blackout that affected much of Italy in 2003.

Interdependent percolation, however, is limited to systems where functionality is determined exclusively by connectivity, thus providing only a partial understanding to a wealth of real-world systems whose functionality is defined according to dynamical rules.

Research has shown that two fundamental ways in which nodes in one system can influence nodes in another one are interdependence (or cooperation), as in critical infrastructures or financial networks, and antagonism (or competition), as observed in ecological systems, social networks, or in the human brain.

Interdependent and competitive interactions may also occur simultaneously, as observed in predator-prey relationships in ecological systems, and in binocular rivalry in the brain.

In a paper published recently in Nature Physics, Bar-Ilan University Prof. Havlin, and a team of researchers, including Stefano Boccaletti, Ivan Bonamassa, and Michael M. Danziger, present a dynamic dependency framework that can capture interdependent and competitive interactions between dynamic systems which are used to study synchronization and spreading processes in multilayer networks with interacting layers.

“This dynamic dependency framework provides a powerful tool to better understand many of the interacting complex systems which surround us,” wrote Havlin and team. “The generalization of dependent interactions from percolation to dynamical systems allows for the development of new models for neural, social and technological systems that better capture the subtle ways in which different systems can affect one another.”

Prof. Havlin's research since 2000 has produced groundbreaking new mathematical methods in network science which have led to extensive interdisciplinary research in the field. Following Havlin's and his colleagues' publication of the theory of percolation, he received the American Physical Society's Lilienfeld Prize, which is awarded for “a most outstanding contribution to physics”. Earlier this year he received the Israel Prize in Chemistry and Physics.

Media Contact

Elana Oberlander EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

New organoid with all key pancreas cells

Researchers from the Organoid group (previously Clevers group) at the Hubrecht Institute have developed a new organoid that mimics the human fetal pancreas, offering a clearer view of its early development….

Unlocking the potential of nickel

New study reveals how to use single atoms to turn CO2 into valuable chemical resources. Nickel and nitrogen co-doped carbon (Ni-N-C) catalysts have shown exceptional performance in converting CO2 into…

‘Spooky action’ at a very short distance

Scientists map out quantum entanglement in protons. Particles streaming from collisions offer insight into dynamic interactions and collective behavior of quarks and gluons. Scientists at the U.S. Department of Energy’s…