Physicists have learned to change the wavelength of Tamm plasmons
School physics teaches that the basis of an ordinary mirror is a thin aluminum or silver foil. Glass, which is in fact a large transparent piece of ordinary silica sand, just does not allow the foil to bend and rust.
However, glass also reflects light, so a dozen layers of ordinary glass and flintg lass (a special high-reflective glass) is more expensive and high-quality analogue of a metal mirror. Such a structure is also called a one-dimensional photonic crystal. It means that the refractive index changes periodically in one direction, in this case perpendicular to the layers.
What happens if such a multilayered mirror is covered with silver? It looks like Napoleon cake, where instead of cakes – glass and flintglass, instead of top-cream, silver, and the thickness of this cake is slightly larger than a micron. In such a device, light can be locked between two mirrors – metal and multilayer. The energy of light accumulates on the boundary between the metallic and multilayer mirrors and begins to leak through the multilayer mirror. So a double mirror can pass, and not reflect light.
In such a situation, a special quasiparticle of light is formed between the mirrors – not a photon, but a Tamm plasmon. “The appearance of such a quasiparticle is possible only when the metal is coated with a multilayer mirror. In this case, it is possible to obtain a light trapped between mirrors, and one of the reflecting surfaces must necessarily be metallic. Unlike the ordinary plasmon, which is a traveling wave, Tamm plasmon represents a standing wave, that is, it does not lead to energy transfer, “the first author of the paper, Pavel Pankin of the Siberian Federal University, explains.
For many practical applications, it is very important to control the wavelength of a Tamm plasmon, its color. For example, this allows you to make a laser with a tunable frequency of radiation, rather than with a fixed frequency. For this purpose, Russian physicists proposed to connect the plasmon with a microcavity.
This was achieved by including a layer of a liquid crystal in a multilayer mirror in the model. As a result, light began to accumulate not only on the border of two mirrors, but also in this layer, – so the hybrid structure was achieved.
Earlier, in order to change the color of a Tamm plasmon, scientists had to make a new structure. Now it is sufficient to heat or electrify the liquid crystal, and the connection will cause Tamm plasmon to change color.
The Tamm plasmon allows to create lasers, optical filters, single photon sources, thermal emitters and absorbers of a new type. The authors hope that their work will expand the range of possible applications.
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…