Technology Enrolled in Hunt for Life on Mars

A team from NASA’s Jet Propulsion Laboratory in Pasadena, Calif., has created a device for use on the European ExoMars rover mission scheduled for launch in 2013. That space voyage is one of several planned expeditions to the red planet that will follow in the footsteps of NASA’s Phoenix mission, which landed on Mars late last month and this week began preparing to test soil samples.

The microfluidic or “lab-on-a-chip” device – which takes its name from the fact that the credit-card sized invention can perform multiple detailed laboratory tests – could be used to analyze Martian soil and rock for traces of biological compounds such as amino acids, the building blocks of proteins.

But until they turned to materials called perfluoropolyethers (PFPEs), which were first pioneered for use in the field of microfluidics by Joseph DeSimone, Ph.D., Chancellor’s Eminent Professor of Chemistry and Chemical Engineering and his colleagues in UNC’s College of Arts and Sciences, the NASA team was having trouble making a chip that could withstand the rigors of the proposed mission.

Jason Rolland, Ph.D., who helped invent PFPE materials for microfluidic devices when he was a graduate student in DeSimone’s lab, said the tiny apparatus handle very small volumes of liquids through tiny channels, and are similar to microelectronic chips, but for fluids. The elastic nature of PFPEs makes it possible to incorporate moving parts such as tiny valves into the devices.

In a paper co-written by Rolland and published recently in the Royal Society of Chemistry journal Lab on a Chip, the NASA team, led by Peter Willis, Ph.D., said devices made using PFPE membranes sandwiched between layers of glass were easier to make and greatly outperformed other materials such as PDMS and PTFE, commercially known as Teflon®.

The chips also held up to severe stress testing, surviving the equivalent of 1 million operations at temperatures ranging from 50 degrees Celsius to minus 50 degrees Celsius virtually unscathed.

“It turned out that the material fit right into the sweet spot of what NASA’s Jet Propulsion Laboratory needed to enable this device to work,” said Rolland, co-founder and director of research and development at Liquidia Technologies, a company which licensed the PFPE technology from UNC.

“There are several reasons to suspect that amino acids and other biological molecules could be found on the surface of Mars,” Rolland said. “If this device is able to confirm this, it would obviously be one of the most important discoveries of all time. It’s exciting to think that UNC and Liquidia Technologies could be a part of that.”

To see the study, go to: http://www.rsc.org/Publishing/Journals/LC/article.asp?doi=b804265a. For more information about Liquidia, go to www.liquidia.com. For information about NASA’s Jet Propulsion Laboratory, visit http://www.jpl.nasa.gov.

Image: The ExoMars rover (photo credit: European Space Agency): http://uncnews.unc.edu/images/stories/news/science/2008/exomars%20rover_esa.jpg

Note: Rolland can be reached at (919) 991-0835 or Jason.Rolland@liquidia.com.

Media Contact

Patric Lane newswise

More Information:

http://www.unc.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Evidence for reversible oxygen ion movement during electrical pulsing

…enabler of the emerging ferroelectricity in binary oxides. In a recent study published in Materials Futures, researchers have uncovered a pivotal mechanism driving the emergence of ferroelectricity in binary oxides….

Next-generation treatments hitch a ride into cancer cells

Researchers from Osaka University discover that opening a channel into cancer cells helps antisense oligonucleotide drugs reach their targets. Antisense oligonucleotides (ASOs) are next-generation drugs that can treat disease by…

Boron deficiency: oilseed rape reacts as with infection and pest infestation

Genetic mechanisms uncovered… Boron deficiency has a devastating effect on oilseed rape and related plants. However, little is known about the underlying genetic mechanisms. A study shows that the response…

Partners & Sponsors