Researchers Take First Look into the “Eye” of Majoranas
Around 75 years ago, Italian physicist Ettore Majorana hypothesized the existence of exotic particles that are their own antiparticles. Since then, interest in these particles, known as Majorana fermions, has grown enormously given that they could play a role in creating a quantum computer.
Majoranas have already been described very well in theory. However, examining them and obtaining experimental evidence is difficult because they have to occur in pairs but are then usually bound to form one normal electron. Ingenious combinations and arrangements of various materials are therefore required to generate two Majoranas and keep them apart.
Collaboration between theory and practice
The group led by Professor Ernst Meyer has now used predictions and calculations by theoretical physicists Professor Jelena Klinovaja and Professor Daniel Loss (from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics) to experimentally measure states that correspond to Majoranas.
On a superconductor, the researchers evaporated single iron atoms with spin that, due to the row structure of the lead atoms, arrange themselves into a minute wire comprising one row of single atoms. The wires reached an astounding length of up to 70 nanometers.
Single Majoranas on the ends
The researchers examined these mono-atomic chains with the aid of scanning tunneling microscopy and, for the first time, with an atomic force microscope as well. Using the images and measurements, they found clear indications of the existence of single Majorana fermions on the ends of the wires under certain conditions and from a specific wire length on.
Despite the distance between them, the two Majoranas on the ends of the wires are still connected. Together, they form a new state extended across the whole wire that can either be occupied (“1”) or not occupied (“0”) by an electron. This binary property can then serve as the basis for a quantum bit (Qubit) and means that Majoranas, which are also very robust against a number of environmental influences, are promising candidates for creating a future quantum computer.
Predicted wavefunction measured
The researchers from Basel have not only shown that single Majoranas can be generated and measured at the ends of an iron wire, they also performed the first experiment to show that Majoranas are extended quantum objects with an inner structure, as predicted by their theory colleagues. Over an area of several nanometers, the measurements showed the expected wavefunction with characteristic oscillations and twofold decay lengths, which have now been made visible for the first time.
Original paper
Rémy Pawlak, Marcin Kisiel, Jelena Klinovaja, Tobias Meier, Shigeki Kawai, Thilo Glatzel, Daniel Loss, and Ernst Meyer
Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface
npj Quantum Information (2016), doi: 10.1038/npjqi.2016.35
Further information
Prof. Dr. Jelena Klinovaja, University of Basel, Department of Physics, tel +41 61 267 36 56, email: jelena.klinovaja@unibas.ch
Prof. Dr. Daniel Loss, University of Basel, Department of Physics, tel +41 61 267 37 49, email: daniel.loss@unibas.ch
Prof. Dr. Ernst Meyer, Univeristy of Basel, Department of Physics, tel +41 61 267 37 24, email:ernst.meyer@unibas.ch
Media Contact
More Information:
http://www.unibas.chAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…