Simulations by PPPL physicists suggest that magnetic fields can calm plasma instabilities

Magnetic perturbations in a fusion plasma are shown. Credit: Gerrit Kramer

Controlling these instabilities leads to higher temperatures within tokamaks and thus more efficient fusion processes. The research was published in the August issue of Plasma Physics and Controlled Fusion and funded by the DOE Office of Science (Fusion Energy Sciences).

“Controlling and suppressing the instabilities helps improve the fast-ion confinement and plasma performance,” said Kramer, a research physicist at the Laboratory. “You want to suppress the Alfvén waves as much as possible so the fast ions stay in the plasma and help heat it.”

The team gathered data from experiments conducted on the National Spherical Torus Experiment (NSTX) at PPPL before the tokamak was recently upgraded. Then they conducted plasma simulations on a PPPL computer cluster.

The simulations showed that externally applied magnetic perturbations can block the growth of Alfvén waves. The perturbations reduce the gradient, or difference in velocity, of the ions as they zoom around the tokamak. This process calms disturbances within the plasma. “If you reduce the velocity gradient, you can prevent the waves from getting excited,” notes Kramer.

The simulations also showed that magnetic perturbations can calm Alfvén waves that have already formed. The perturbations alter the frequency of the plasma vibration so that it matches the frequency of the wave. “The plasma absorbs all the energy of the wave, and the wave stops vibrating,” said Kramer.

In addition, the simulations indicated that when applied to tokamaks with relatively weak magnetic fields, the external magnetic perturbations could dislodge fast ions from the plasma directly, causing the plasma to cool.

###

Along with Kramer, the research team included scientists from General Atomics, Oak Ridge National Laboratory, the University of California, Los Angeles, and the University of California, Irvine.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Raphael Rosen
rrosen@pppl.gov

 @PPPLab

http://www.pppl.gov 

Media Contact

Raphael Rosen idw - Informationsdienst Wissenschaft

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

New organoid with all key pancreas cells

Researchers from the Organoid group (previously Clevers group) at the Hubrecht Institute have developed a new organoid that mimics the human fetal pancreas, offering a clearer view of its early development….

Unlocking the potential of nickel

New study reveals how to use single atoms to turn CO2 into valuable chemical resources. Nickel and nitrogen co-doped carbon (Ni-N-C) catalysts have shown exceptional performance in converting CO2 into…

‘Spooky action’ at a very short distance

Scientists map out quantum entanglement in protons. Particles streaming from collisions offer insight into dynamic interactions and collective behavior of quarks and gluons. Scientists at the U.S. Department of Energy’s…