Macro-porous, nanocrystalline silicon layer for lithium-ion batteries
For the production of rechargeable batteries, it is desirable to use silicon as anode material in Li-ion batteries. The use of silicon anodes theoretically increases battery capacity tenfold compared to conventional graphite anodes. However, the attempt had previously failed, since the layers would expand by 300 to 400 % due to the storage of lithium ions in the Si bulk material. This induces a high residual strain and can destroy the bulk Si after only a few charge cycles. In addition, as a consequence of the irreversible reaction between the Si anode and electrolyte a layer of solid electrolyte interphase (SEI) can develop and lead to a low coulombic efficiency.
Scientists of the University of Stuttgart now succeeded in developing a porous semiconductor layer, which displays a pore distribution from 50 to 3000 nm and eliminates the residual strain. It can be manufactured in a continuous process.
Further information: PDF
Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH
Phone: +49 (0)721/79 00 40
Contact
Dipl.-Biol. Marcus Lehnen, MBA
As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.
Media Contact
All latest news from the category: Technology Offerings
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…