Surgical Device for Real-Time Elastography

Mechanical elasticity is a central parameter of living cells and tissues. Cancerous and healthy tissues, for example, have a different elasticity. Therefore, tools are under development to make tissue elasticity a new diagnostic marker in medicine1. Nevertheless, these efforts have been hampered by poor spatial resolution (i.e. ultrasound elastography) or by their usability being restricted to an in vitro environment (i.e. scanning ion conductance microscopy2,3,4 (SICM)).
Here, we present a novel instrument which transfers principles of SICM into the macro-environment of endoscopy or laparoscopy. This opens the door for a real-time measurement of tissue elasticity, e. g., during minimally invasive surgery.
Our handheld device uses the pressure of a water jet for inducing a deformation of the outer surface of any given tissue. The resulting change in a simultaneously recorded ion current between two electrodes on the “water nozzle” renders charac-teristic parameters for the elasticity of the tissue.

Further information: PDF

Eberhard Karls Universität Tübingen
Phone: +49 (7071) 29-72639

Contact
Dr. Rolf Hecker

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…