BAM@Hannover Messe: innovative 3D printing method for space flight
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then fusing it using selective laser sintering. Production is controlled by data models.
Metallic powder is locally melted by intensive laser radiation in each layer. What makes this method special is that the application of the powder layers takes place under zero gravity conditions. For this purpose, a process gas – in this case nitrogen – is drawn through the powder layers in order to stabilise the powder bed without gravity.
The procedure has already been successfully tested in two parabolic flight campaigns in cooperation with the Clausthal University of Technology, and the Institute for Composite Structures and Adaptive Systems of the German Aerospace Center (DLR) in Braunschweig.
Metallic powders pose a challenge because they are potentially flammable and explosive. But the research group has developed a method that enables processing of metallic powders in space under a protective gas atmosphere.
“We used a completely new technology to print a wrench for the first time under zero gravity in our latest parabolic flight campaign in March,” explains Prof. Jens Günster, project manager and head of BAM’s Ceramic Processing and Biomaterials division. “We are pleased to be able to present our research results at the Hannover Messe and show our method’s potential to the space industry.”
Some of the processes used have already been internationally patented. They are based on two patent families that were jointly registered by BAM and Clausthal University of Technology within Germany and by BAM alone outside Germany.
BAM at the Hannover Messe 2018
At the BAM stand C 51 in Hall 2 Research & Technology visitors can receive additional information about this topic.
For more information about what BAM is presenting at the Hannover Messe, please visit www.bam.de/hannovermesse_en
Contact:
Venio Quinque, M.A., LL.M./LL.B.
Head of Section Corporate Communications
Bundesanstalt für Materialforschung und –prüfung (BAM)
Unter den Eichen 87
12205 Berlin
GERMANY
T: + 49 30 8104-1002
F: + 49 30 8104-71002
venio.quinque@bam.de
About BAM
BAM promotes safety in technology and chemistry.
As a departmental research institute of the German Federal Ministry for Economic Affairs and Energy, BAM performs research, testing and offers advisory support to protect people, the environment and material goods. Its activity in the fields of materials science, materials engineering and chemistry is focussed on the technical safety of products and processes.
BAM’s research is directed towards substances, materials, building elements, components and facilities as well as natural and technical systems important for the national economy and relevant to society. It also tests and assesses their safe handling and operation. BAM develops and validates analysis procedures and assessment methods, models and necessary standards and provides science-based services for the German industry in a European and international framework.
Safety creates markets.
BAM sets and represents high standards for safety in technology and chemistry for Germany and its global markets to further develop the successful German quality culture “Made in Germany“.
Media Contact
All latest news from the category: Trade Fair News
Newest articles
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….
Climate change can cause stress in herring larvae
The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…
Soil ecosystem more resilient when land managed sustainably
Compared to intensive land use, sustainable land use allows better control of underground herbivores and soil microbes. As a result, the soil ecosystem is more resilient and better protected from…