Compamed 2014: New manufacturing processes for medical products made of fiber-reinforced plastics

Puncture needle for minimally invasive interventions made from carbon-fiber-reinforced plastics Source: Fraunhofer IPT

The use of thermoplastic materials for such composites has opened up new options for manufacturing parts such as adaptable micro-implants for neurosurgery or complex parts such as prostheses.

The Fraunhofer-Institute for Production Technology IPT will be presenting the results of their research work relating to all aspects of the manufacture of medical products from fiber-reinforced materials at the Compamed Medical Technology Trade Fair in Düsseldorf 12 – 14 November 2014 in Hall 8a, Booth K38.

Advanced fiber-reinforced materials are state-of-the-art in a number of applications in the aerospace sector as well as in the automotive industry and in the generation of renewable energy. They are up to 70 % lighter than metal or ceramic – but at the same time, they can withstand high levels of mechanical stress and are resistant to chemical influences. At Compamed, researchers from the Fraunhofer IPT in Aachen will be presenting the areas of application in medical engineering in which fiber-reinforced plastics look set to figure in the future.

Strong and pliable: Instruments for minimally invasive MRI procedures

Instruments for minimally invasive surgery are already being mass-produced from fiber-reinforced plastics using the micro-pullwinding process developed by the Fraunhofer IPT. This technique is used by the Fraunhofer IPT to produce three-layered micro-profiles with diameters well below 1 mm, which can be used in guide wires, cannulas and catheters.

The required bending and torsional characteristics of the instruments can be adjusted continuously to match the area of application in hand using precision-positioned reinforcement fibers with no interruption to the mass production process. The suitability of these instruments for use in magnetic resonance imaging (MRI) is an additional advantage: in contrast to metallic components, there is no occurrence of any spurious artefacts when these instruments are used.

The materials which can be transformed time and time again: Thermoplastic fiber-reinforced plastics

The researchers in Aachen are also developing methods and production systems geared to processing thermoplastic fiber composites for the manufacture of individually customizable medical products such as prostheses, implants or even wheelchairs. The resultant components can be reformed following the initial hardening process, thus ensuring that, unlike similar parts made of thermosetting materials, they can be adapted to suit individual requirements. Many of the thermoplastic matrix materials have previously been licensed for use in medical engineering and are therefore no longer subject to protracted licensing procedures.

Diverse range of manufacturing processes for customized mass production

The Fraunhofer IPT is also currently exploring the application of laser radiation in welding processes to bond multi-part components with complex structures securely together thereby completely eliminating the need to use noxious adhesives. The aim here is to enable processes already well-established in plastic-welding environments to be transferred to the manufacture of medical products.

The focus of laser-assisted tape-laying and winding technique developed at the Fraunhofer IPT is used to manufacture load-bearing structures from fiber-reinforced lightweight engineering materials in a process which is both resource and energy efficient.

The engineers from Aachen work closely with medical facilities and commercial medical technology providers in the drive to develop new manufacturing processes suitable for the mass production of customizable products as well as for the design and construction of fiber-reinforced components for medical engineering applications.

Contact

Dipl.-Ing. Alexander Brack
Fraunhofer Institute for Production Technology IPT
Steinbachstrasse 17
52074 Aachen
Germany
Phone +49 241 8904-355
alexander.brack@ipt.fraunhofer.de
www.ipt.fraunhofer.de  

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20141024compamed2014.html

Media Contact

Susanne Krause Fraunhofer-Institut

All latest news from the category: Trade Fair News

Back to home

Comments (0)

Write a comment

Newest articles

A new puzzle piece for string theory research

Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….

Climate change can cause stress in herring larvae

The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…

Making high-yielding rice affordable and sustainable

Plant biologists show how two genes work together to trigger embryo formation in rice. Rice is a staple food crop for more than half the world’s population, but most farmers…