ESA finds a black-hole flywheel in the Milky Way
Far away among the stars, in the Ara constellation of the southern sky, a small black hole is whirling space around it. If you tried to stay still in its vicinity, you couldnt. Youd be dragged around at high speed as if you were riding on a giant flywheel.
In reality, gas falling into the black hole is whirled in that way. It radiates energy, in the form of X-rays, more intensely than it would do if space were still by tapping into the black holes internal energy stream.
ESAs big X-ray detecting satellite, XMM-Newton, was specifically designed to detect this form of energy. With this finding it has chalked up another notable success in its investigations of the black holes – mysterious regions of space where gravity is so strong that light cant escape. High speeds and intense gravity affect the energy of X-rays emitted from iron atoms very close to a black hole. By detecting the resulting spread of energies, with XMM-Newton, astronomers can diagnose the conditions there.
The weird effect of a spinning black hole on its surroundings is linked to Albert Einsteins theory of gravity, in which the fabric of space itself becomes fluid. XMM-Newton first discovered such black-hole flywheels in galaxies many millions of light-years away. Now, in findings to be formally reported next month, it sees the same thing much closer to home, in our own Galaxy, the Milky Way.
A US-European team of astronomers made the discovery last September, during an outburst from the vicinity of a black-hole candidate called XTE J1650-500. This object is about 10 times heavier than the Sun. A similar black-hole flywheel in another galaxy, already examined by XMM-Newton, is a million times more massive than that, and 4000 times more distant.
“Now weve seen this astonishing behaviour across a great range of distances and masses,” comments Matthias Ehle, a member of the team at ESAs Villafranca satellite station in Spain. “Our hopes that XMM-Newton would vastly improve our understanding of black holes have not been disappointed.”
The astronomers describe their observations and their interpretations in a paper to be published in Astrophysical Journal Letters, 10 May 2002. The lead author is Jon Miller of the Massachusetts Institute of Technology.
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
NTU and NUS spin-off cutting-edge quantum control technology
AQSolotl’s quantum controller is designed to be adaptable, scalable and cost-efficient. Quantum technology jointly developed at Nanyang Technological University, Singapore (NTU Singapore) and National University of Singapore (NUS) has now…
How Geothermal Energy Shapes Bavaria’s Green Future Through Sustainable Energy
The Bavarian State Ministry of Science and the Arts has extended its funding for the research association “Geothermal Alliance Bavaria,” with the University of Bayreuth (UBT) continuing as a member…
Spintronics memory innovation: A new perpendicular magnetized film
Long gone are the days where all our data could fit on a two-megabyte floppy disk. In today’s information-based society, the increasing volume of information being handled demands that we…