Researchers Identify Protein That Detects Damaged DNA

Physicians have long marveled at the body’s ability to heal itself. Over time, breaks, tears, burns and bruises can often disappear sans medical intervention. Less well-understood are the similarly extraordinary repairs that take place on the molecular level, in DNA. To that end, findings announced today in the Proceedings of the National Academy of Sciences, may prove insightful. According to the report, researchers have found that a protein known as ATR appears to sense damage to DNA and touch off a sequence of events leading to molecular mending.

Ultraviolet radiation, chemotherapy and other agents can cause lesions in cellular DNA that must be fixed before the cell divides and replicates the mutations, which can lead to cancer, among other problems. Previous work had implicated ATR in the repair of damaged DNA, but exactly which part of that cascade of events the protein is responsible for remained a mystery. The new research, conducted by Aziz Sancar and his colleagues at the University of North Carolina, suggests that ATR directly detects DNA lesions and sounds the alarm bell, summoning the other members of the repair crew to duty, so to speak. “To find out if ATR directly sensed damaged DNA, we put a molecular tag on the ATR protein and purified it,” Sancar explains. “We incubated the tagged protein with either bits of DNA that were normal or damaged by UV radiation. ATR bound more often to damaged DNA than to undamaged DNA.” Furthermore, he notes, ATR’s activity increased when it encountered problematic DNA.

The results imply that ATR functions as an initial sensor in what is known as the DNA damage checkpoint response. “This is a very important phenomenon in both normal and cancerous cells,” Sancar observes. “ATR appears to act as a switch that starts the repair process and also stops cells from proliferating while they are being repaired.” Although the new work “is not going to cure cancer by itself,” he remarks, “it is a significant step forward” in that it could point the way to new anticancer drugs.

Media Contact

Kate Wong Scientific American

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…