The secret behind silkworm's hardy stomachs
Mulberry leaves contain an extremely high amount of alkaloids that inhibit enzymes that break down sucrose (sugar), and thus are potentially quite toxic. However, one type of sucrase called beta-fructofuranosidase is not affected by these alkaloids.
Until now, this enzyme has not been found in any animals, but Toru Shimada and colleagues believed this might explain the silkworm’s unique diet.
The researchers scanned the silkworm genome and discovered two fructofuranosidase genes, although only one was actually expressed in the worm. This gene (BmSuc1) was, as expected, concentrated in the worm’s gut, although surprisingly was also prevalent in the silk gland. When they isolated the enzyme from silkworms, the researchers found it could effectively digest sucrose.
Shimada and colleagues note that further work is needed to determine if this special enzyme is the sole reason for silkworm’s resistance to mulberry toxins. It’s possible that fructofuranosidases may turn up in other insects that cannot eat mulberry leaves, indicating additional factors are at work.
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…