'Armored' fish study helps strengthen Darwin's natural selection theory

Measuring three to 10 centimetres long, stickleback fish originated in the ocean but began populating freshwater lakes and streams following the last ice age. Over the past 20,000 years – a relatively short time span in evolutionary terms – freshwater sticklebacks have lost their bony lateral plates, or “armour,” in these new environments.

“Scientists have identified a mutant form of a gene, or allele, that prohibits the growth of armour,” says UBC Zoology PhD candidate Rowan Barrett. Found in fewer than one per cent of marine sticklebacks, this allele is very common in freshwater populations.

Barrett and co-authors UBC post-doctoral fellow Sean Rogers and Prof. Dolph Schluter set out to investigate whether the armour gene may have helped sticklebacks “invade” freshwater environments. They relocated 200 marine sticklebacks with the rare armour reduction allele to freshwater experimental ponds.

“By documenting the physical traits and genetic makeup of the offspring produced by these marine sticklebacks in freshwater, we were able to track how natural selection operates on this gene,” says Rogers.

“We found a significant increase in the frequency of this allele in their offspring, evidence that natural selection favours reduced armour in freshwater,” says Barrett.

Barrett and Rogers also found that offspring carrying the allele are significantly larger in size. “It leads us to believe that the genetic expression is also tied to increased growth rate,” says Barrett.

“If the fish aren’t expending resources growing bones – which may be significantly more difficult in freshwater due to its lack of ions – they can devote more energy to increasing biomass,” says Barrett. “This in turn allows them to breed earlier and improves over-winter survival rate.”

Celebrating its 150th anniversary this week, Darwin’s first publication of his natural selection theory proposed that challenging environments would lead to a struggle for existence, or “survival of the fittest.” Since then, scientists have advanced the theory by contributing an understanding of how genes affect evolution.

“This study provides further evidence for Darwin’s theory of natural selection by showing that environmental conditions can directly impact genes controlling physical traits that affect the survival of species,” says Barrett.

Media Contact

Brian Lin EurekAlert!

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Multiple Sclerosis: Early Warnings in the Immune System

LMU researchers demonstrate that certain immune cells already play an important role in the early stages of multiple sclerosis. The researchers compared the CD8 T cells of monozygotic twin pairs,…

Quantum communication: using microwaves to efficiently control diamond qubits

Major breakthrough for the development of diamond-based quantum computers. Quantum computers and quantum communication are pioneering technologies for data processing and transmission that is much faster and more secure than…

Logic with light

Introducing diffraction casting, optical-based parallel computing. Increasingly complex applications such as artificial intelligence require ever more powerful and power-hungry computers to run. Optical computing is a proposed solution to increase…

Partners & Sponsors