New Recipe For Self-Healing Plastic Includes Dash Of Food Additive
The repair process, in which solvent-filled microcapsules embedded in an epoxy matrix rupture when a crack forms, is a major improvement over the original self-healing process first described in February 2001.
“While our previous solvent worked well for healing, it was also toxic,” said Scott White, a professor of aerospace engineering and a researcher at the university’s Beckman Institute. “Our new solvent is both non-toxic and less expensive.”
During normal use, epoxy-based materials experience stresses that can cause cracking, which can lead to mechanical failure. Autonomic self-healing – a process in which the damage itself triggers the repair mechanism – can retain structural integrity and extend the lifetime of the material.
Designed to mimic the human body’s ability to repair wounds, self-healing materials release a healing agent into the crack plane when damaged, and through chemical and physical processes, restore the material’s initial fracture properties.
In November 2007, White and collaborators reported the use of chlorobenzene, a common – but toxic – organic solvent, which in epoxy resins achieved a healing efficiency of up to 82 percent.
In their latest work, which combined a non-toxic and Kosher-certified food additive (ethyl phenylactate) and an unreacted epoxy monomer into microcapsules as small as 150 microns in diameter, the researchers achieved a healing efficiency of 100 percent.
“Previously, the microcapsules contained only solvent, which flowed into the crack and allowed some of the unreacted matrix material to become mobile, react and repair the damage,” said graduate research assistant Mary Caruso. “By including a tiny amount of unreacted epoxy monomer with the solvent in the microcapsules, we can provide additional chemical reactivity to repair the material.”
When the epoxy monomer enters the crack plane, it bonds with material in the matrix to coat the crack and regain structural properties. In tests, the solvent-epoxy monomer combination was able to recover 100 percent of a material’s virgin strength after damage had occurred.
“This work helps move self-healing materials from the lab and into everyday applications,” said graduate research assistant Benjamin Blaiszik. “We’ve only begun to scratch the surface of potential applications using encapsulated solvent and epoxy resin.”
In addition to White, Caruso and Blaiszik, the other co-authors of the paper were materials science and engineering professor Nancy Sottos and chemistry professor Jeffrey Moore. The researchers reported their findings in the scientific journal Advanced Functional Materials.
The work was supported by the U.S. Air Force Office of Scientific Research and the U.S. Department of Defense. Some of the work was performed at the university’s Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy.
Editor’s note: To reach Scott White, call 217-333-1077; e-mail: swhite@illinois.edu
Media Contact
More Information:
http://www.illinois.eduAll latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans
The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…