"Living Fossil" Tree Contains Genetic Imprints of Rain Forests Under Climate Change

The research appears in the November issue of the journal Evolution.

Symphonia globulifera is a widespread tropical tree with a history that goes back some 45 million years in Africa, said Christopher Dick, an assistant professor of ecology and evolutionary biology who is lead author on the paper. It is unusual among tropical trees in having a well-studied fossil record, partly because the oil industry uses its distinctive pollen fossils as a stratigraphic tool.

About 15 to 18 million years ago, deposits of fossil pollen suggest, Symphonia suddenly appeared in South America and then in Central America. Unlike kapok, a tropical tree with a similar distribution that Dick also has studied, Symphonia isn't well-suited for traveling across the ocean—its seeds dry out easily and can't tolerate saltwater. So how did Symphonia reach the neotropics? Most likely the seeds hitched rides from Africa on rafts of vegetation, as monkeys did, Dick said. Even whole trunks, which can send out shoots when they reach a suitable resting place, may have made the journey. Because Central and South American had no land connection at the time, Symphonia must have colonized each location separately.

Once Symphonia reached its new home, it spread throughout the neotropical rain forests. By measuring genetic diversity between existing populations, Dick and coworker Myriam Heuertz of the Université Libre de Bruxelles were able to reconstruct environmental histories of the areas Symphonia colonized.

“For Central America, we see a pattern in Symphonia that also has been found in a number of other species, with highly genetically differentiated populations across the landscape,” Dick said. “We think the pattern is the result of the distinctive forest history of Mesoamerica, which was relatively dry during the glacial period 10,000 years ago. In many places the forests were confined to hilltops or the wettest lowland regions. What we're seeing in the patterns of genetic diversity is a signature of that forest history.”

In the core Amazon Basin, which was moist throughout the glacial period, allowing for more or less continuous forest, less genetic diversity is found among populations, Dick said. “There's less differentiation across the whole Amazon Basin than there is among sites in lower Central America.”

The study is the first to make such comparisons of genetic diversity patterns in Central and South America. “We think similar patterns will be found in other widespread species,” Dick said.

Learning how Symphonia responded to past climate conditions may be helpful for predicting how forests will react to future environmental change, Dick said.

“Under scenarios of increased warmth and drying, we can see that populations are likely to be constricted, particularly in Central America, but also that they're likely to persist, because Symphonia has persisted throughout Central America and the Amazon basin. That tells us that some things can endure in spite of a lot of forest change. However, past climate changes were not combined with deforestation, as is the case today. That combination of factors could be detrimental to many species—especially those with narrow ranges—in the next century.”

The researchers received funding from the National Science Foundation and the National Fund for Scientific Research of Belgium.

For more information:

Christopher Dick: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?beginswith=Dick

http://sitemaker.umich.edu/cwdicklab/home

Evolution: International Journal of Organic Evolution: http://www.blackwellpublishing.com/journal.asp?ref=0014-3820

Media Contact

Nancy Ross-Flanigan Newswise Science News

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…

Researcher Claudia Schmidt analyzing Arctic fjord water samples affected by glacial melt.

Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems

The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…