DEISA Extreme Computing Initiative Awards 2009
These DEISA Extreme Computing (DECI) projects will each have access to resources at one or more of the 11 DEISA partner sites, including 12 of the Top 100 most powerful supercomputers in the world. Through DECI, now in its fourth year, scientists are tackling a wide range of scientific challenges.
Successful projects are chosen for their potential to achieve ground-breaking scientific results through the use of supercomputers, enabling them to run more detailed and accurate simulations of scientific problems than was previously possible. Multi-national proposals are especially encouraged and the latest projects to be supported include collaborations involving scientists from three continents, although the vast majority of the participants are based in Europe.
Staff from DEISA will work closely with the researchers, providing applications support to enable and deploy the codes on the most appropriate architecture.
Alison Kennedy, Coordinator of DECI said, “DEISA is delighted to be able to provide compute resources and applications enabling assistance to such a wide range of researchers in so many innovative projects. It’s very exciting to see the impact that DECI has in advancing scientific knowledge and competitiveness in Europe.”
Professor Gernot Muenster, the Principal Investigator of the Nf1 DECI project to study fundamental issues in quantum field theory said, “In order to attain the goals of our project and to arrive at conclusive results, we need computational resources which exceed our previous approvals. Thanks to DEISA, we will be able to perform simulations in sufficiently large lattice volumes and sufficiently small lattice spacings to obtain relevant results. Also, the support of our calculations by DEISA staff members, concerning implementation and optimization of our program codes, is of very high value for our project.”
Professor Simon Portegies Zwart, the Principal Investigator of the Gravitational Billion Body Problem (GBBP) DECI project related to cosmological studies on Cold Dark Matter said, “Thanks to the available compute resources and the excellent network facilities of DEISA we can now make a breakthrough in computational science, especially in our understanding of the dark matter distribution in the Universe”.
Media Contact
All latest news from the category: Awards Funding
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…