Rearrangements of multifunctional genes cause cancer in children and young people

A family of genes known as the “FET” genes has been investigated in the work presented in the thesis. This family contains three genes that are found in modified forms in several malignant soft-tissue tumours and several forms of leukaemia.

The FET genes are found in these tumours in the form of what are known as “fusion genes” in which parts of two different genes have merged to form one gene. Fusion genes are translated into abnormal fusion proteins, which can in certain cases transform normal cells to cancer cells.

The human body consists of many different types of specialised cell types such as nerve cells, fat cells and intestinal cells. These are formed when stem cells multiply and mature gradually along different developmental pathways. Cancer may arise if something goes wrong in this process. The study has shown that the activities of the genes in the FET family fall as the cells mature, and scientists therefore believe that these genes play a role during the early stages of cell maturation, when the cells are not far from the stem cell stage. The normal maturation pathway of a cell becomes blocked when fusion genes that contain FET genes arise. The result is a cancer cell with properties similar to those of stem cells, and such a cell can multiply in an uncontrolled manner.

“We found that the FET genes are also involved in the response of the cell to external and internal stress, and when cells spread. Alterations of such processes are common in cancer cells”, says Mattias Andersson.

It normally requires damage to several different genes before cancer cells develop, and this usually takes a long time. However, since the FET genes are involved in several of the normal cell processes, scientists believe that in their rearranged form they can affect in parallel several of the control systems that prevent a normal cell from becoming a cancer cell. This may give rise to rapid development of cancer, and it may be the reason that tumours with FET fusion genes are often found in children and young people.

“Studying normal FET genes has increased our understanding of what may go wrong in cancer cells having rearrangements of these genes. This may in the long term lead to new methods of treatment for tumour diseases that contain FET fusion genes”, says Mattias Andersson.

The thesis has been written by:
Mattias Andersson, MSc, telephone: +46 31 342 2928, e-mail: mattias.andersson@llcr.med.gu.se
Supervisor:
Professor Pierre Åman, telephone: +46 31 342 2842, e-mail: pierre.aman@llcr.med.gu.se
A thesis presented for the degree of Doctor of Philosophy (Medicine) at the Sahlgrenska Academy, Institute of Biomedicine.
Title of the thesis: FET proteins in cancer and development
The thesis will be defended on Friday 6 March, at 9.00, in the lecture theatre, Patologen, Sahlgrenska University Hospital, Ehrenströmsgatan 1, Göteborg, Sweden
Ulrika Lundin, Public relations officer, Sahlgrenska Academy at the University of Gothenburg, Telephone: +46 31 786 3869, Mobile: +46 70 775 8851

e-mail: ulrika.lundin@sahlgrenska.gu.se

The Sahlgrenska Academy is the faculty of health sciences at the University of Gothenburg. Education and research are conducted within the fields of medicine, odontology and health care sciences. About 4000 undergraduate students and 1000 postgraduate students are enrolled at Sahlgrenska Academy. The staff is about 1500 persons. 850 of them are researchers and/or teachers.

Media Contact

Helena Aaberg idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…