Genomics and world peace

Developing countries stand to profit most from advances in genome science, write Samuel Broder, Stephen Hoffman and Peter Hotez in this month’s issue of EMBO reports (EMBO reports September, 2002 pp 806–812). They claim that biotechnology coupled with genomics might emerge as the key technology in the 21st century for improving global health and probably even avoiding major political conflicts and wars.

The authors warn that we must no longer view the diseases of the developing world in purely medical or public health contexts. Infectious diseases could pose a major risk to the economic survival of many developing nations. Even more striking, recent data suggest that some of these diseases may have wider implications for geopolitical stability or the probability that a nation will experience armed conflict. “If it is possible to transfer weapon technology to the developing world it should be possible to transfer innovative countertechnologies to these countries. We believe that genomics could be such a countertechnology,” says Samuel Broder.

The progress resulting from genomic research is significant. It has already advanced our knowledge of infectious diseases. The complete genomic sequences of many pathogens responsible for morbidity and mortality in the developing world are now established. The new tools in comparative genomics, computational biology, and informatics have already yielded promising results in studying invertebrate parasites that cause tropical diseases. When combined with the sequence of the human genome, and the sequence of some of the vectors of disease, like the Anopheles mosquitoes that transmit malaria parasites, they offer remarkable opportunities for reducing the negative impact of these diseases.

However, the authors point out that the applications of this research might only benefit patients in the First World, since there has been little or no commercial interest in developing treatments against the tropical diseases that occur among the world’s poorest people. The authors illustrate this with several diseases such as malaria, hookworm and AIDS. “To achieve greater impact for the developing countries it will be necessary to combine the efforts made by some not-for-profit organisations and private funds to support research for the developing world and to link genomic research with vaccine research and other technologies.” says Samuel Broder. “It will also be necessary to transfer these new technologies to developing countries and to give these countries access to necessary information, such as gene data bases.”

Media Contact

Ellen Peerenboom EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…