U.Va. Technology Named a Top 10 Innovation for 2009

The technology, called BioLevitator, is an automated single-unit incubator and centrifuge and one of the first 3-D cell culture systems. It allows researchers to grow more cells in less time than two-dimensional systems and is closer to a natural in vivo environment. Through its efficiency, it also reduces the use of harsh chemicals and lab ware, making it safer for the environment than other systems.

BioLevitator was developed with support from U.Va.'s biomedical engineering student internship program and launched from the Darden School of Business Batten Business Incubator.

“The benchtop size and microprocessor-controlled and -monitored environment, coupled with innovative use of magnetic fields to maintain cells in suspension, makes the BioLevitator an innovative product in a very traditional field,” said Dr. Shawn Levy, one of the magazine's judges.

The cell culture system was invented by U.Va. pathology professors Robin A. Felder and John Gildea, and was commercialized following incubation in the Darden Business School and mentorship in the T100 Alumni Mentoring Program [http://www.virginia.edu/vpr/industry/T100.html], under the direction of the Office of the Vice President for Research.

The technology, the centerpiece of Charlottesville-based Global Cell Solutions, is currently being sold around the world for a variety of applications, including stem cell research.

“Many of the needs for culturing a variety of cell types and performing complex drug discovery analysis have been met by this U.Va. invention,” said Uday Gupta, president and CEO of Global Cell Solutions and a 2004 graduate of the Darden School. “The market response confirms this honor and we are very excited about the future.”

“The University of Virginia has rapidly become a nationally prominent generator of new technology-based ventures,” said Thomas C. Skalak, U.Va. vice president for research. “This accomplishment is a tribute to the company's leadership team and the University's collective efforts to encourage innovation and to identify novel solutions for the marketplace.”

Aimed at a growing market for improved ways to grow stem cells and research cells, the technology already has demonstrated remarkable improvements in cell growth and in vivo-like qualities.

“We needed a new approach to growing human cells that reproduced conditions found in the human body and allowed for more productivity,” Felder said. “The BioLevitator is addressing this need.”

Media Contact

Fariss Samarrai Newswise Science News

More Information:

http://www.virginia.edu

All latest news from the category: Awards Funding

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…