Molecular imaging: diagnosing diseases before symptoms strike
Researchers at Washington University School of Medicine in St. Louis are developing methods to track molecular events in the body to diagnose disease long before symptoms appear and to predict the effectiveness of drug therapies. The research is under way at the School of Medicines new Molecular Imaging Center at the Mallinckrodt Institute of Radiology. The Center is funded by a five-year $9.4 million grant from the National Cancer Institute.
“Molecular imaging combines the latest in imaging technology with the power of molecular biology,” says David Piwnica-Worms, M.D., Ph.D., professor of radiology and of molecular biology and pharmacology and director of the new center.
“We believe that molecular imaging will one day enable us to diagnose specific molecular events of cancer, neurologic disease or inflammation earlier in the course of disease, and that this will help doctors identify the most effective therapy for individual patients.”
Piwnica-Worms described molecular imaging and research being done at the Center during the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.
Investigators at the Center are using molecular imaging to study protein-protein interactions, immune cells attacking a tumor, and the course of a viral infection and its response to antiviral therapy. Other researchers are developing a means to noninvasively predict the effectiveness of particular chemotherapy drugs in patients with advanced lung cancer. The investigators are studying lung tumors for ways to image the activity of a protein that pumps certain anticancer drugs out of tumor cells, rendering the drugs ineffective for those individuals.
Positron emission tomography (PET) is one example of molecular imaging technology already in use clinically. PET scans are used, for instance, to detect the spread of certain cancers. Patients are given a form of sugar — glucose — that contains a weak radioactive label. The labeled sugar is taken up more rapidly by tumor cells than by normal cells because the tumor cells are growing at a faster rate. PET-scan imaging reveals this higher level of uptake, thereby providing a non-surgical means of detecting an otherwise hidden tumor.
Researchers at Washington Universitys Molecular Imaging Center are developing new applications for existing technologies, such as PET, and exploring new methods of molecular imaging using near-infrared fluorescence and bioluminescence probes.
Questions
Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu
Media Contact
More Information:
http://news-info.wustl.edu/News/casw/piwnica.htmlAll latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…