Remote laser cutting of sheet metal with highly brilliant beam sources

On Stand E16 in Hall 6 at the Hannover Fair (MicroNanoTec, April 19 – 23, 2010) the Fraunhofer ILT is showcasing a laser system for remote fine cutting. The Aachen-based research engineers will demonstrate live how the system can be used to cut 0.2 mm-thick steel sheets in seconds.

Fitted with a 1 kW single mode fiber laser and a mirror scanner, the unit can machine components in the millimeter range at cycle times of less than 100 ms. This short processing time is achieved by dispensing with mechanical movement axes. Beam movement is performed by mirrors mounted on highly dynamic galvanometer drives. Cuts of 20 µm are achieved with suitable optical systems, so that precision parts, such stator sheets for electric motors, can be processed rapidly and accurately.

Cost advantages and flexibility for small series

Fine cutting with remote laser is particularly interesting as a means to save costs in the production of prototypes and small series, because it offers much greater flexibility and freedom with regard to component geometry than conventional methods such as milling or punching. Expensive tool changes are not required.

Combined punching-bending processes are a good example. In this case, the punch geometry must first be iteratively matched to the bending process. In conventional production methods the manufacture and adaptation of the punching tools entails high costs and long waiting times. Remote laser cutting offers the advantage that the component geometry can be optimized, within a very short time and at virtually no cost, to achieve the desired shape. In contrast to conventional punching systems, the laser unit is ready to use straightaway. There are no long lead times. Remote laser cutting thus makes it possible to shorten development times and increase process flexibility while reducing costs.

The research engineers based in Aachen are able to put together an installation to match the needs of the specific process by combining predefined modules. A suitable optical system with matching laser beam source is integrated in a machine housing and, if necessary, fitted with additional sensors or a clamping device. The system can be used for inscribing, plastic welding, microstructuring, remote laser cutting and metal welding.

Contacts at the Fraunhofer ILT
Our experts will be pleased to assist if you have any questions:
Dr.-Ing. Jens Holtkamp
Expert Group Ablation and Joining
Phone +49 241 8906-273
jens.holtkamp@ilt.fraunhofer.de
Dr.-Ing. Arnold Gillner
Manager of Expert Group Ablation and Joining
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Media Contact

Axel Bauer Fraunhofer Gesellschaft

More Information:

http://www.ilt.fraunhofer.de

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…

Microscopic view of blood cells representing ASXL1 mutation research findings.

ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation

Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…