Emergent resistance network suggests mechanism for colossal magnetoresistance

Research by scientists at Stanford University and RIKEN has revealed new clues on the microscopic processes by which resistance in certain materials is dramatically altered by the presence of magnetic fields. Reported in Science, the discovery provides fundamental insights toward the development of radically new memory and switching devices.

Colossal magnetoresistance (CMR), a phenomenon in which enormous variations in resistance are produced by small magnetic field changes, has attracted attention as a means to develop low-power, more compact alternatives to conventional circuits. Unlike semiconductors such as silicon, electrons in the manganites and other transition metal oxides in which CMR occurs interact strongly with each other, held in place by a lattice that constrains their movement. CMR is triggered when a strong magnetic field induces such materials to tip from a charge-ordered insulating phase into a ferromagnetic metallic phase, drastically altering the material’s properties.

An earlier technique developed by the team was successful in producing manganite films only a few dozen nanometers thick capable of undergoing this transition from insulating to metallic phase. To explore the mechanisms underlying this transition, the researchers adapted a microwave impedance microscope to withstand cryogenic temperatures and extreme magnetic fields. Using this microscope, they discovered that under a powerful 9 tesla magnetic field, filamentary metallic domains emerge in the manganite films, forming an interconnected network aligned along the axes of the film substrate.

The first ever evidence of a microscopic mechanism for CMR, the discovery of this network greatly enhances our understanding of microscopic phase transitions in thin film manganites. It also marks a major advance in the race toward new memory and switching devices, whose impact promises to revolutionize computing technology.

For more information, please contact:

Dr. Masashi Kawasaki
Dr. Masao Nakamura
Functional Superstructure Team, Emergent Materials Department
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-1111 (ex. 6323) / Fax: +81-(0)48-467-4703
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

Media Contact

gro-pr Research asia research news

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…