Sandia ’be there now’ hardware enhances long-distance collaborations
Huge data sets examined interactively yet remotely
A surgeon in New York who wants the opinion quickly of a specialist in Los Angeles probably would send medical MRI [magnetic resonance imaging] files as e-mail attachments or make them accessible in Internet drop zones. Unfortunately for patients on operating tables, extremely large files may take a half-hour to transmit and require a very large computer ( perhaps not available ) to form images from the complicated data. Additionally, each rotation of the image for better viewing can take minutes to appear.
Now, interactive remote-visualization hardware that allows doctors to view and manipulate images based on very large data sets as though standing in the same room has been developed at Sandia National Laboratories.
The tool also will work for engineers, military generals, oil exploration teams, or anyone else with a need to interact with computer-generated images from remote locations.
“The niche for this product is when the data set youre trying to visualize is so large you cant move it, and yet you want to be collaborative, to share it without sending copies to separate locations,” says Sandia team leader Lyndon Pierson.
Stretching video cables
The Sandia hardware, for which a patent has been applied, allows the data to be kept at the main location but sends images to locations ready to receive them. The interactivity then available is similar to two people operating a game board.
The lag time between action and visible result is under 0.1 second even though the remote computer is thousands of miles away and the data sets, huge.
“We expect our method will interest oil companies, universities, the military — anywhere people have huge quantities of visualization data to transmit and be jointly studied,” says Pierson. “Significant commercial interest [in the new device] has been demonstrated by multiple companies.”
The Sandia hardware leverages without shame the advances in 3D commercial rendering technology “in order not to re-invent the wheel,” says Sandia researcher Perry Robertson.
Graphics cards for video games have extraordinary 2-D and even 3-D rendering capabilities within the cards themselves. But images from these cards, typically fed to nearby monitors, do not solve the problem of how to plug them into a network, says Robertson.
Fortunately, the Sandia extension hardware looks electronically just like a monitor to the graphics card, says Robertson. “So, to move an image across the Internet, as a first step our device grabs the image.”
Transmitting image and response
The patented Sandia hardware squeezes the video data flooding in at nearly 2.5 gigabits a second into a network pipe that carries less than 0.5 gigabits/sec.
“While compression is not hard, its hard to do fast. And it has to be interactive, which streaming video typically is not,” says Pierson.
The Sandia compression minimizes data loss to ensure image fidelity. “Users need to be sure that the things they see on the screen are real, and not some artifact of image compression,” he says.
The group knew that a hardware solution was necessary to keep up with the incoming video stream.
“Without it, the receivers frame rate would be unacceptably slow,” says Robertson. “We wanted the user to experience sitting right at the supercomputer from thousands of miles away.”
“In an attempt to reduce the need for additional hardware,” says John Eldridge, a Sandia researcher who wrote the software applications, “we also created software versions of the encoder and decoder units for testing purposes. However, there is only so much you can do in software at these high resolutions and frame rates.”
The custom-built apparatus has two boards ( one for compression, the other for expansion. The boards use standard low-cost SDRAM memory, like that found in most PCs, for video buffers. Four reprogrammable logic chips do the main body of work. A single-board PC running Linux is used for supervisory operations.
“We turned to Linux because of its networking support and ease of use,” says Ron Olsberg, a Sandia project engineer.
“We built this apparatus for very complex ASCI visualizations. If we could have bought it off the shelf, we would have,” says Robertson.
Funded by ASCIs [Advanced Scientific Computing Initiative] Problem-Solving environment, a pair of boards cost about $25,000, but are expected to cost much less when commercially available.
A successful demonstration took place in late October between Chicago and the Amsterdam Technology Center in the Netherlands. A second demonstration occurred between Sandia locations in Albuquerque and Livermore and the show floor of the Supercomputing 2002 convention in Baltimore in November.
“Now that this technology is out there, we expect other applications will begin to take advantage of it,” says Pierson. “Their experiences and improvements will eventually feed back into US military capability.”
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energys National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
Story available at: http://www.sandia.gov/news-center/news-releases/2002/comp-soft-math/hotlaptop.html Sandia National Laboratories World Wide Web home page is located at www.sandia.gov.
Sandia news releases, news tips, science photo gallery, and periodicals can be found at the News and Events button.
Sandia National Laboratories
A Department of Energy National Laboratory
Managed and Operated by Sandia Corporation
ALBUQUERQUE, NM LIVERMORE, CA
MEDIA RELATIONS DEPARTMENT MS 0165
ALBUQUERQUE, NM 87185-0165
PHONE: (505) 844-8066 FAX: (505) 844-0645
Media Contact
All latest news from the category: Communications Media
Engineering and research-driven innovations in the field of communications are addressed here, in addition to business developments in the field of media-wide communications.
innovations-report offers informative reports and articles related to interactive media, media management, digital television, E-business, online advertising and information and communications technologies.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…