Penn Physicists Develop Scalable Method for Making Graphene

As explained in a recently published study, a Penn research team was able to create high-quality graphene that is just a single atom thick over 95% of its area, using readily available materials and manufacturing processes that can be scaled up to industrial levels.

“I’m aware of reports of about 90%, so this research is pushing it closer to the ultimate goal, which is 100%,” said the study’s principal investigator, A.T. Charlie Johnson, professor of physics. “We have a vision of a fully industrial process.”

Other team members on the project included postdoctoral fellows Zhengtang Luo and Brett Goldsmith, graduate students Ye Lu and Luke Somers and undergraduate students Daniel Singer and Matthew Berck, all of Penn’s Department of Physics and Astronomy in the School of Arts and Sciences.

The group’s findings were published on Feb. 10 in the journal Chemistry of Materials.

Graphene is a chicken-wire-like lattice of carbon atoms arranged in thin sheets a single atomic layer thick. Its unique physical properties, including unbeatable electrical conductivity, could lead to major advances in solar power, energy storage, computer memory and a host of other technologies. But complicated manufacturing processes and often-unpredictable results currently hamper graphene’s widespread adoption.

Producing graphene at industrial scales isn’t inhibited by the high cost or rarity of natural resources – a small amount of graphene is likely made every time a pencil is used – but rather the ability to make meaningful quantities with consistent thinness.

One of the more promising manufacturing techniques is CVD, or chemical vapor deposition, which involves blowing methane over thin sheets of metal. The carbon atoms in methane form a thin film of graphene on the metal sheets, but the process must be done in a near vacuum to prevent multiple layers of carbon from accumulating into unusable clumps.

The Penn team’s research shows that single-layer-thick graphene can be reliably produced at normal pressures if the metal sheets are smooth enough.

“The fact that this is done at atmospheric pressure makes it possible to produce graphene at a lower cost and in a more flexible way,” Luo, the study’s lead author, said.

Whereas other methods involved meticulously preparing custom copper sheets in a costly process, Johnson’s group used commercially available copper foil in their experiment.

“You could practically buy it at the hardware store,” Johnson said.

Other methods make expensive custom copper sheets in an effort to get them as smooth as possible; defects in the surface cause the graphene to accumulate in unpredictable ways. Instead, Johnson’s group “electropolished” their copper foil, a common industrial technique used in finishing silverware and surgical tools. The polished foil was smooth enough to produce single-layer graphene over 95% of its surface area.

Working with commercially available materials and chemical processes that are already widely used in manufacturing could lower the bar for commercial applications.

“The overall production system is simpler, less expensive, and more flexible” Luo said.

The most important simplification may be the ability to create graphene at ambient pressures, as it would take some potentially costly steps out of future graphene assembly lines.

“If you need to work in high vacuum, you need to worry about getting it into and out of a vacuum chamber without having a leak,” Johnson said. “If you’re working at atmospheric pressure, you can imagine electropolishing the copper, depositing the graphene onto it and then moving it along a conveyor belt to another process in the factory.”

This research was supported by Penn’s Nano/Bio Interface Center through the National Science Foundation.

Media Contact

Evan Lerner EurekAlert!

More Information:

http://www.upenn.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Cichlids practicing brood care in 3D-printed snail shells

Time to Leave Home? Revealed Insights into Brood Care of Cichlids

Shell-dwelling cichlids take intense care of their offspring, which they raise in abandoned snail shells. A team at the Max Planck Institute for Biological Intelligence used 3D-printed snail shells to…

Amphiphile-enhanced wearable fabric generating electricity from movement

Smart Fabrics: Innovative Comfortable Wearable Tech

Researchers have demonstrated new wearable technologies that both generate electricity from human movement and improve the comfort of the technology for the people wearing them. The work stems from an…

Visualization of Atlantic Meridional Overturning Circulation (AMOC) stability over 60 years

Going Steady—Study Reveals North Atlantic’s Gulf Stream Remains Robust

A study by the University of Bern and the Woods Hole Oceanographic Institution in the USA concludes that the ocean circulation in the North Atlantic, which includes the Gulf Stream,…