New Measurement Into Biological Polymer Networks
“Our results have provided some of the first microscopic insights into a sixty year old puzzle about the way polymeric networks react to repeated shear strains,” said Dr. Daniel Blair, Assistant Professor, and principal investigator of the Soft Matter Group in the Department of Physics at Georgetown University.
Blair, Professor Andreas Bausch and other researchers at Technische Universtaet Muenchen (Technical University of Munich) used the muscle filament known as actin to construct a unique polymer network. In their quest to understand more about bio-polymers, they developed the rheometer and confocal microscope system (measures the mechanical properties of materials), which provide a unique and unprecedented level of precision and sensitivity for investigating polymeric systems which were previously too small to visualize during mechanical stress experiments. The rheometer and confocal microscopes clearly visualized the fluorescently labeled actin network and they filmed the polymer filaments'movement in 3-D when mechanical stress was applied.
The rheometer and confocal microscopes, will help to lay the groundwork for future generations of materials that will possibly be used to create synthesized muscle tissue for the Air Force. These materials may even be ideally suited for powering micro-robots. The rheometer and confocal microscopes enabled the scientists to see the shearing process during the Mullins Effect when biological polymers become dramatically softer as seen in conventional polymers. Moreover, these materials also demonstrate dramatic strengthening in a way that is very different compared to conventional polymeric solids.
The researchers' next steps will be to use the Mullins Effect as a mechanical standard for understanding the properties of composite and biological networks.
“We will use confocal-rheology as a benchmark system for generating new collaborations and expanding the technique to other AFOSR sponsored projects,” said Blair. “For example, in collaboration with Dr. Fritz Vollrath of the Oxford Silk Group and Dr. David Kaplan from Tufts University, we are investigating how shear stress influences the formation of silk fibers.”
Blair noted that the new technology is impacting a number of other AFOSR supported projects as a platform for investigating the strengthening of nano-composite networks such as carbon nanotubes and cellulose nanofibers embedded in conventional materials.
Blair predicts that there will be possible private sector uses for the new technology in the area of the green revolution and its inherent smart, soft biological materials.
ABOUT AFOSR:
The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.
Media Contact
More Information:
http://www.afosr.af.milAll latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Time to Leave Home? Revealed Insights into Brood Care of Cichlids
Shell-dwelling cichlids take intense care of their offspring, which they raise in abandoned snail shells. A team at the Max Planck Institute for Biological Intelligence used 3D-printed snail shells to…
Smart Fabrics: Innovative Comfortable Wearable Tech
Researchers have demonstrated new wearable technologies that both generate electricity from human movement and improve the comfort of the technology for the people wearing them. The work stems from an…
Going Steady—Study Reveals North Atlantic’s Gulf Stream Remains Robust
A study by the University of Bern and the Woods Hole Oceanographic Institution in the USA concludes that the ocean circulation in the North Atlantic, which includes the Gulf Stream,…