UBC Researchers Develop New Model to Predict Optical Properties of Nano-Structures

The finding could help inform the design of tailored nano-structures, and be of utility in a wide range of fields, including the remote sensing of atmospheric pollutants and the study of cosmic dust formation.

Aerosols and nano-particles play a key role in atmospheric processes as industrial pollutants, in interstellar chemistry and in drug delivery systems, and have become an increasingly important area of research. They are often complex particles made up of simpler building blocks.

Now research published this week by UBC chemists indicates that the optical properties of more complex non-conducting nano-structures can be predicted based on an understanding of the simple nano-objects that make them up. Those optical properties in turn give researchers and engineers an understanding of the particle's structure.

“Engineering complex nano-structures with particular infrared responses typically involves hugely complex calculations and is a bit hit and miss,” says Thomas Preston, a researcher with the UBC Department of Chemistry.

“Our solution is a relatively simple model that could help guide us in more efficiently engineering nano-materials with the properties we want, and help us understand the properties of these small particles that play an important role in so many processes.”

The findings were published this week in the Proceedings of the National Academy of Sciences.

“For example, the properties of a more complex particle made up of a cavity and a core structure can be understood as a hybrid of the individual pieces that make it up,” says UBC Professor Ruth Signorell, an expert on the characterization of molecular nano-particles and aerosols and co-author of the study.

The experiment also tested the model against CO2 aerosols with a cubic shape, which play a role in cloud formation on Mars.

The research was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation.

Read the paper in the Proceedings of the National Academy of Sciences
www.pnas.org/content/early/2011/03/14/1100170108.abstract

Media Contact

Chris Balma EurekAlert!

More Information:

http://www.ubc.ca

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Cichlids practicing brood care in 3D-printed snail shells

Time to Leave Home? Revealed Insights into Brood Care of Cichlids

Shell-dwelling cichlids take intense care of their offspring, which they raise in abandoned snail shells. A team at the Max Planck Institute for Biological Intelligence used 3D-printed snail shells to…

Amphiphile-enhanced wearable fabric generating electricity from movement

Smart Fabrics: Innovative Comfortable Wearable Tech

Researchers have demonstrated new wearable technologies that both generate electricity from human movement and improve the comfort of the technology for the people wearing them. The work stems from an…

Visualization of Atlantic Meridional Overturning Circulation (AMOC) stability over 60 years

Going Steady—Study Reveals North Atlantic’s Gulf Stream Remains Robust

A study by the University of Bern and the Woods Hole Oceanographic Institution in the USA concludes that the ocean circulation in the North Atlantic, which includes the Gulf Stream,…