Perlegen scientists find genetic basis for difference between humans and non-human primates
Genomic rearrangements discovered using DNA microarrays are expected to reveal genetic regions important to human health
Mountain View, CA ¾ March 3, 2003 ¾ Perlegen Sciences, Inc. today announced the publication of a scientific paper in the latest issue of the peer-reviewed journal Genome Research. The paper, “Genomic DNA insertions and deletions occur frequently between humans and nonhuman primates,” describes novel findings suggesting that genomic rearrangements, not single base pair changes in DNA, provide the genetic basis for the differences between humans and non-human primates such as the chimpanzee.
“This is a very surprising and important discovery of the fundamental basis of structural genomic differences between humans and other primates,” said David Cox, M.D., Ph.D, Perlegen’s Chief Scientific Officer. “It provides a valuable starting point from which to improve our understanding of what makes human beings unique.”
Analysis of the differences in sequence between human and chimpanzee DNA has previously established that the two species are approximately 98.5% identical. For this reason, it is widely accepted that qualitative and quantitative differences in gene expression are responsible for the major biological differences among humans, chimpanzees and other non-human primates. To date it has been commonly thought that single base pair changes in these genomes, not larger DNA rearrangements, would underlie the majority of these postulated genomic regulatory differences.
“Comparative genome analysis of human and non-human primates is a useful technique for deciphering the function of specific genomic regions,” commented Kelly Frazer, Ph.D., Senior Director of Genomic Biology at Perlegen and the lead author on the paper. “This study illustrates the power and versatility of Perlegen’s high-density array technology in the detection of DNA rearrangements.”
Comparison of human chromosome 21 with chimpanzee, orangutan, rhesus macaque, and woolly monkey DNA sequences identified a significant number of random genomic rearrangements between human and nonhuman primate DNA. This evidence shows, contrary to popular belief, that genomic rearrangements have occurred frequently during primate genome evolution and are a significant source of variation between humans and chimpanzees as well as other primates. These DNA rearrangements are commonly found in segments containing genes, suggesting possible functional consequences and therefore provide natural starting points for focused investigations of variations in gene expression between humans and other primates, including variations which may provide important clues in researching human health and disease.
Perlegen conducts genetics research and develops products that impact and improve people’s lives through a proprietary, cost-effective method for rapidly analyzing and comparing entire genomes. This whole genome association study capability enables Perlegen to identify genes that work in concert to cause common diseases and affect the body’s response to drugs. Perlegen has ongoing research collaborations with partners including Bristol-Myers Squibb, Eli Lilly & Co., GlaxoSmithKline, Pfizer and Unilever.
About Perlegen Sciences
Formed in late 2000 as a spin-off of Affymetrix, Inc. (Nasdaq: AFFX), Perlegen is accelerating the development of therapeutics and diagnostics and enabling a new paradigm of high-resolution whole genome scanning. For more information about Perlegen and its technologies, visit Perlegen’s web site at www.perlegen.com. Perlegen is a trademark of Perlegen Sciences, Inc.
Media Contact
More Information:
http://www.noonanrusso.com/All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…