Moving X-rays to revolutionise the diagnosis of back pain

A ’solid model’ of the human lumbar spine

A new image processing system devised by engineers at the University of Southampton could change the way that back problems are diagnosed and provide a solution to one of the most common causes of work loss in the UK.

Low back pain is a significant problem and its cost to society is enormous. However, diagnosis of the underlying causes remains problematic despite extensive study. Reasons for this arise from the deep-rooted situation of the spine and also from its structural complexity.

Professor Robert Allen and his team in the Signal Processing & Control Group in the University’s Institute of Sound & Vibration Research are working with colleagues at the University’s Electronics & Computer Science department, The Anglo-European College of Chiropractic, and Salisbury Hospital, to develop a way of X-raying individuals while they are moving, a technique which they believe will improve the diagnosis of back problems by enabling clinicians to quantify how the spine is moving.

‘Up to now, clinicians have frequently used plain X-rays to diagnose back problems,’ comments Professor Allen. ‘These X-rays can only tell you about the spine in a static position, but if we X-ray as the person moves using very low dose radiation, we can see how the spine is moving and with image processing techniques, we can quantify the movement. Since back pain is often caused by soft tissue damage and not damage to the bones themselves, abnormal motion of the vertebrae may help us to locate the source of the problem.’

Their approach is based on automatically identifying vertebrae from the motion image sequences, calculating how each vertebrae moves and coupling this information with a dynamic 3-D lumbar spine visualisation. The traditional approach has been for clinicians to take 2-D images and to form a 3-D impression by mentally transforming these images. Three-dimensional visualisation of the lumbar spine can allow clinicians to observe the lumbar spine from different viewpoints and angles and may be helpful in understanding, diagnosing and treating back pain problems.

Their next challenge is to establish what ‘normal’ movement looks like so that they are in a position to recognise abnormalities.

Media Contact

Sarah Watts alfa

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…