Creating Sustainability Model for Swine Production; Research Will Increase Productivity, Decrease Costs of Production

With a total of $5 million in funding from the U.S. Department of Agriculture, the multi-disciplinary team, which includes researchers at Purdue University and Virginia Tech, is developing an integrated management tool for swine production based on a comprehensive analysis of the many processes that comprise swine production – from crops used for feed to various methods of managing waste.

“A primary purpose of this work is to evaluate and mitigate the environmental footprint of swine-production facilities,” said Greg Thoma, professor of chemical engineering. “What action can we take to limit greenhouse-gas emissions from these facilities without making processes more expensive for the farmer? So we want to understand this impact and then come up with something that will enable farmers to make informed decisions about changes to production, such as breeding, feeding, waste-management and other practices. To do this, we must understand the entire system – or full life cycle – of swine production in this country.”

In line with global efforts to make agricultural processes more sustainable and to address climate change, the overall goal of the project is to experimentally evaluate and develop technologies that mitigate greenhouse gas-emissions. These technologies will support the development of an accurate and robust life-cycle analysis that will serve as a model to demonstrate the environmental impact of various changes to production. For example, in a project spearheaded by Charles Maxwell, professor of animal science, the model will show how manipulating the diet of hogs will affect the amount and type of crops grown to feed the animals, as well as carbon emitted from the animals through burping and flatulence.

The model is flexible and allows for geographic customization. It will consider factors including weather patterns and annual rainfall, which affect decisions related to heating and cooling and the amount of manure that can be applied to land without affecting water quality.

An equally important goal is to make swine production cheaper and more efficient, so the project also will include a life-cycle cost analysis. Directed by Jennie Popp, professor of agricultural economics, this analysis will measure the economic impact of process changes. To use the example above, the amount or type of crops grown to feed animals may increase or reduce the hog farmer’s feed costs, not to mention the impact to the soybean or grain farmer, who, as Thoma emphasized, is a critical part of the life cycle of swine production. The cost-analysis model will demonstrate the effect of changes made to the system.

“The beauty of these models is that the algorithms behind them will show what will happen, both environmentally and economically, if a farmer decides to change the diet of his hogs – to substitute amino acids for vegetable proteins, for example,” Thoma said. “What impact will this have on emissions? Will it increase production? The models will provide these answers.”

The work includes an innovative project in which researchers – Marty Matlock and Tom Costello, professor and associate professor of biological and agricultural engineering, respectively – remove nitrogen and phosphorus from pig manure and then use these nutrients to grow algae as feedstock that can be converted into biofuel. Matlock will also manage research experiences for undergraduates to investigate how livestock production fits into the larger perspective of agricultural sustainability.

Each state – Arkansas, Indiana and Virginia – will have an extension component to communicate findings and benefits of the model and help producers apply the knowledge to make their operations more efficient and sustainable. Karl VanDevender, professor and extension engineer for the University of Arkansas Division of Agriculture, leads coordination of extension education efforts. To learn more about what the UA Division of Agriculture will do to share the model with Arkansas producers, go to www.extension.org.

“Unlike most natural resources, agriculture is renewable,” Thoma said. “But current practices do not allow us to manage it as such. This is what we’re trying to accomplish, a system that is efficient, more productive and yet cheaper to produce, and less damaging to land, water and air.”

Funded over five years from the USDA National Institute of Food and Agriculture, the project includes researchers from the University of Arkansas, the University of Arkansas Division of Agriculture, Purdue University, Virginia Tech and the private sector. As principal investigator, Thoma directs the overall project and also leads an interdisciplinary team at the University of Arkansas, which will receive approximately half of the total funding. The UA Division of Agriculture will receive $608,000, and the remainder will go to partner institutions.

CONTACTS:
Greg Thoma, professor, chemical engineering
College of Engineering
479-575-7374, gthoma@uark.edu
Marty Matlock, professor, biological and agricultural engineering
College of Engineering
479-575-2849, mmatlock@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Media Contact

Matt McGowan Newswise Science News

More Information:

http://www.uark.edu

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Nerve cells of blind mice retain their visual function

Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…

State-wide center for quantum science

Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…

Newly designed nanomaterial

…shows promise as antimicrobial agent. Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective…