A Simple Way to Help Cities Monitor Traffic More Accurately

One common error is called “splashover” because it usually involves an over-sensitive detector picking up the presence a vehicle in the next lane over – as if the signal from the car “splashed over” into the adjacent lane.

Now Ohio State University researchers have developed software to help city managers easily identify detectors that are prone to splashover and reprogram them to get more accurate numbers.

Benjamin Coifman, associate professor of Civil, Environmental and Geodetic Engineering at Ohio State, and doctoral student Ho Lee describe the software in the October 2012 issue of the journal Transportation Research Part C: Emerging Technologies.

For the study, Coifman and Lee monitored 68 in-road detectors in Columbus, Ohio. They found six detectors that were prone to erroneously detecting cars in adjacent lanes. Error rates ranged from less than 1 percent to 52 percent.

“A host of city services rely on these data. We've known about splashover for decades, but up until now, nobody had an effective automatic test for finding it,” said Coifman. “With this software, we can help transportation departments know which detectors to trust when deciding how they should put their limited dollars to work.”

People may not be familiar with the commonly used loop detectors, which are often present at intersections to activate a stoplight. When the detectors are visible, they look like rectangular cutouts in the road surface, where underground wiring connects the detector to a traffic box at the side of the road. The same detectors are often present at freeway onramps and exits, to help cities monitor congestion.

To see how often splashover occurred in the 68 detectors in the study, the researchers went to the sites, and noted whether a car was truly present each time a detector counted a car. Then they used those data to construct computer algorithms that would automatically identify the patterns of error.

In tests, the software correctly identified four of the six detectors that exhibited splashover. The two it missed were sites with error rates less than 1 percent – specifically 0.6 percent and 0.9 percent.

“We might not catch detectors in which one in 100 or one in 1,000 vehicles trigger splashover,” Coifman said, “but for the detectors where the rate is one in 20, we'll catch it.”

The discovery comes just as many American cities are moving toward the use of different technologies, such as roadside radar detectors, to monitor traffic.

“The world is moving away from loop detectors,” Coifman added. “And the radar sensors that are replacing loop detectors are actually more prone to splashover-like errors.”

These radar detectors bounce a signal off a car and measure the time it takes for the signal to return. Because the detectors are on the side of the road, small measurement errors often cause a single vehicle to be counted in two separate lanes by the radar.

The same algorithms they developed for loop detectors should work for radar detectors, Coifman said. The makers of radar detectors keep their software proprietary, so he can't readily test that hypothesis, though he points out that all of the details of the Ohio State algorithms are fully explained in the article, should radar makers wish to incorporate it into their products.

This study was facilitated by the Ohio Department of Transportation, and funded by NEXTRANS, the U.S. Department of Transportation Region V Regional University Transportation Center; and by the California PATH (Partners for Advanced Highways and Transit) Program of the University of California, in cooperation with the State of California Business, Transportation and Housing Agency, Department of Transportation.

Contact: Benjamin Coifman, (614) 292-4282; Coifman.1@osu.edu (Coifman is best reached by email.)

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Media Contact

Pam Frost Gorder EurekAlert!

More Information:

http://www.osu.edu

All latest news from the category: Transportation and Logistics

This field deals with all spatial and time-related activities involved in bridging the gap between goods and people, including their restructuring. This begins with the supplier and follows each stage of the operational value chain to product delivery and concludes with product disposal and recycling.

innovations-report provides informative reports and articles on such topics as traffic telematics, toll collection, traffic management systems, route planning, high-speed rail (Transrapid), traffic infrastructures, air safety, transport technologies, transport logistics, production logistics and mobility.

Back to home

Comments (0)

Write a comment

Newest articles

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…

Microscopic view of blood cells representing ASXL1 mutation research findings.

ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation

Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…