Scientists take a step nearer to creating an artificial egg using a somatic cell

Madrid, Spain: Scientists believe that they are an important step nearer to success in creating an artificial egg from the combination of the nucleus of a somatic cell and an oocyte which has had its DNA-carrying nucleus removed, a conference of international fertility experts heard today (Tuesday 1 July).

Dr Peter Nagy, from Reproductive Biology Associates, Atlanta, collaborating with the University of Connecticut, USA, told the European Society of Human Reproduction and Embryology annual conference that former approaches to haploidisation[1] using a fully mature oocyte and a resting (interphase) somatic cell had caused misaligned chromosomes during cell division. However, he was confident from his team’s latest experiments that this difficulty could be overcome, even though their new approach also ran into some problems.

“We decided to initiate haploidisation at an earlier stage in the oocyte’s cell cycle, when it was still immature, but this time using a somatic cell in its active (metaphase or G2/M) stage. Essentially, we took the control of the first nuclear division away from the oocyte and gave it to the somatic cell,” he said.

The US-Brazilian research team[2] , working with mouse cells, removed the nucleus of the immature oocyte, then transformed the somatic cell from its diploid (46 chromosome or 2n) stage to its next (4n) stage and transferred it to the immature enucleated oocyte (ooplast).

“What we expected by doing this was that the DNA in the somatic cell would condense into chromosomes inside the somatic cell – not in the ooplast – and that the somatic cell would direct the chromosome alignment and initial spindle formation, which would then be normal. The nucleus of the somatic cell, at its second stage of division and correctly assembled, would then undergo chromosome segregation in the ooplast, resulting in twice its diploid nuclear content during in-vitro maturation. As a result of an artificial activation, a second round of chromosome segregation provides the haploid (23 chromosome) normal oocyte content. This is a novel strategy that cannot be used with a mature ooplast because mature ooplasts can support only one round of chromosome segregation.”

However, the researchers found that there were still some misaligned chromosomes and problems with the integrity of the spindle – the chromosomes’ ’holding’ mechanism. But, they are confident that these will be overcome.

“This initial set of experiments shows that it is possible to induce haploidisation with our approach,” said Dr Nagy. “This is the first time that this has been tried so we are still learning. Now we have to check how frequently the chromosomal problems occur and whether there is an easy solution or whether it is a fundamental difficulty.”

But, even in a worst case scenario, he said, it does not mean that they were back to the drawing board because his team was already developing new techniques to overcome the problem.

“I’m really confident – not simply optimistic – that haploidisation will work and if everything goes well we will be able to obtain artificial gametes in one or two years. Even if we encounter more problems it should still be possible within three to five years.”

Haploidisation is not cloning because it is the production of a reconstituted egg (which can then be fertilised by the sperm) in a situation where a woman has no eggs of her own. One of the woman’s own somatic cells would be the source of the chromosome-carrying nucleus, which would be transferred into a donated ’shelled-out’ oocyte.

Note
[1] Haploid: a cell with only one set of chromosomes – in humans 23. Only the egg and sperm are haploid.
[2] University of Connecticut, Animal Science, Storrs, USA; Reproductive Biology Associates, Atlanta, USA; Clinical e Centro de Pesquisa em Reprodução Humana Roger Abdelmassih, São Paulo, Brazil.

Further information:
Emma Mason, information officer
Tel: 44-0-1376-563090
Fax: 44-0-1376-563272
Mobile: 44-0-7711-296986
Email: wordmason@aol.com

Press Office: (Sunday 29 June -Wednesday 2 July)
Margaret Willson, Emma Mason, Maria Maneiro, Janet Blümli
Tel: 34-917-220-501 or 34-917-220-502
Fax: 34-917-220-503

Media Contact

Margaret Willson EurekAlert!

More Information:

http://www.eshre.com/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…

Researcher Claudia Schmidt analyzing Arctic fjord water samples affected by glacial melt.

Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems

The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…