‘Electronic Nose’ Prototype Developed
Research by Nosang Myung, a professor at the University of California, Riverside, Bourns College of Engineering, has enabled a Riverside company to develop an “electronic nose” prototype that can detect small quantities of harmful airborne substances.
Nano Engineered Applications, Inc., an Innovation Economy Corporation company, has completed the prototype which is based on intellectual property exclusively licensed from the University of California. The device has potential applications in agriculture (detecting pesticide levels), industrial sites (detecting gas leaks, combustion emissions), homeland security (warning systems for bio-terrorism) and the military (detecting chemical warfare agents).
“This is a really important step,” Myung said. “The prototype clearly shows that our research at the university has applications in industry.”
Steve Abbott, president of Nano Engineered Applications, Inc., which is designing the product and expects to begin selling it within a year, said the company is now focused on writing software related to the device and working to make it smaller.
At present, it’s about four inches by seven inches. The goal is to make it the size of a credit card. At that size, a multi-channel sensor would be able to detect up to eight toxins. A single-channel sensor device could be the size of a fingernail.
Nano Engineered Applications is now looking to collaborate with companies that could bring the production version to market, Abbott said. He believes the product will initially be commercialized on the industrial side for monitoring such things as gas and toxin leaks, and emissions.
The key to the prototype is the nanosensor array that Myung started developing eight years ago. It uses functionalized carbon nanotubes, which are 100,000 times finer than human hair, to detect airborne toxins down to the parts per billion level.
The prototype also includes a computer chip, USB ports, and temperature and humidity sensors. Version 2 of the prototype, due out in 30 days, will integrate a GPS device and a Bluetooth unit to sync it with a smart phone. The development team is evaluating if adding Wi-Fi capabilities will add value.
The unit is designed to be incorporated in three basic platforms: a handheld device, a wearable device and in a smart phone. Different platforms will be used depending on the application.
For example, a handheld unit could be used for environmental monitoring, such as a gas spill. A wearable unit could be used for a children’s asthma study in which the researcher wants to monitor air quality. A smart phone unit could be used by public safety officials to detect a potentially harmful airborne agent.
In the past year, Nano Engineered Applications, Inc. has provided financial support to Myung’s research. Of that, a portion went toward naming Myung’s lab the Innovation Economy Corporation Laboratory.
About Nano Engineered Applications, Inc.
Nano Engineered Applications, Inc. (NEA), an Innovation Economy Corporation company, is focused on commercializing patent pending, air-borne chemical detection technology. With NEA’s cost-effective and scalable fabrication techniques, this research advancement can be transformed into portable devices that detect minute quantities of harmful air-borne substances. For more information, please visit www.neapplications.com.
About Innovation Economy Corporation
Innovation Economy Corporation (IEC), located in Riverside, California, commercializes innovations with global impact potential. With a philosophy of “Doing Good and Doing Well,” IEC’s mission is to acquire innovative research, technology, products/services and transform them into high-growth businesses with the potential to enhance the lives of people across the globe. For more information, please visit www.iecorp.co.
Media Contact
Sean Nealon
Tel: (951) 827-1287
E-mail: sean.nealon@ucr.edu
Twitter: seannealon
Additional Contacts
Nosang Myung
Tel: 951-827-7710
E-mail: myung@engr.ucr.edu
Media Contact
All latest news from the category: Innovative Products
Newest articles
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…
ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation
Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…