Researchers Develop New Low Cost, High Efficiency Solar Technology
The RTI solar cells are formed from solutions of semiconductor particles, known as colloidal quantum dots, and can have a power conversion efficiency that is competitive to traditional cells at a fraction of the cost.
Solar energy has the potential to be a renewable, carbon-neutral source of electricity but the high cost of photovoltaics – the devices that convert sunlight into electricity – has slowed widespread adoption of this resource.
The RTI-developed solar cells were created using low-cost materials and processing techniques that reduce the primary costs of photovoltaic production, including materials, capital infrastructure and energy associated with manufacturing.
Preliminary analysis of the material costs of the technology show that it can be produced for less than $20 per square meter—as much as 75 percent less than traditional solar cells.
“Solar energy currently represents less than 1 percent of percent of the global energy supply, and substantial reductions in material and production costs of photovoltaics are necessary to increase the use of solar power,” said Ethan Klem, a research scientist at RTI and co-principal investigator of the project. “This technology addresses each of the major cost drivers of photovoltaics and could go a long way in helping achieve that goal.”
The technology was recently featured in a paper published in Applied Physics Letters.
In demonstration tests, the cells consistently provided a power conversion efficiency more than 5 percent, which is comparable to other emerging photovoltaic technologies.
“The efficiency of these devices is primarily limited by the amount of sunlight that is absorbed,” said Jay Lewis, a senior research scientist at RTI and the project’s other principal investigator. “There are many well-known techniques to enhance absorption, which suggests that the performance can increase substantially.”
The cells, which are composed of lightweight, flexible layers, have the potential to be manufactured using high volume roll-to-roll processing and inexpensive coating processes, which reduces capital costs and increases production. Unlike traditional solar cells, the RTI-developed cells can be processed at room temperature, further reducing input energy requirements and cost.
In addition to being low-cost, the new cells have several other key benefits, including higher infrared sensitivity, which allows the cells to utilize more of the available solar spectrum for power generation.
About RTI International
RTI International is one of the world's leading research institutes, dedicated to improving the human condition by turning knowledge into practice. Our staff of more than 2,800 provides research and technical expertise to governments and businesses in more than 40 countries in the areas of health and pharmaceuticals, education and training, surveys and statistics, advanced technology, international development, economic and social policy, energy and the environment, and laboratory and chemistry services. For more information, visit www.rti.org.
Media Contact
More Information:
http://www.rti.orgAll latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…