U.Va. researchers discover mechanism for the regulation of low-voltage-activated calcium channels
Researchers at the University of Virginia Health System have defined a molecular mechanism by which the activity of low-voltage-activated calcium channels can be decreased. Low-voltage-activated, T-type calcium channels are found in many types of tissue and alterations in their activity can contribute to several pathological conditions, including congestive heart failure, hypertension, cardiac arrhythmias, epilepsy and neuropathic pain. The findings will be published in the July 10 edition of Nature. The team led by Paula Q. Barrett, professor of pharmacology and principle investigator of the study, found that G-protein beta gamma subunits, a class of cell membrane proteins that mediate the actions of hormones within the cell, markedly decrease the flow of calcium through these channels into the cell interior. Because elevation of calcium within cells stimulates cellular activity, regulation of calcium entry is an important way by which the function of cells can be controlled. The research uncovered that only one member of a large family of G-protein subunits binds directly to the calcium channel protein to inhibit channel activity.
“These studies identify the T-type calcium channel as a new target for G-protein beta gamma subunits,” Barrett said. “The extraordinary specificity of the interaction between these regulatory molecules could be operative in many types of cells and provides exciting insight into the highly selective ways in which cells work. Knowledge of these interactions will lead to the development of new and more specific drugs in the future.”
Joshua T. Wolfe, a graduate student whose work is supported by the American Heart Association, conducted much of the work for this research. Support for the research also came from the National Institutes of Health and the University of Virginia Cardiovascular Research Center.
Media Contact
More Information:
http://hsc.virginia.edu/newsAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans
The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…