Dot, dot, dot . . . How quantum dots line up

A method that can be used to predict the growth of earthquake faults also aids prediction of the tiniest of phenomena–how arrays of “artificial atoms,” or quantum dots, assemble and stack themselves on semiconductor materials, National Institute of Standards and Technology (NIST) researchers report in the July 15 issue of Physical Review B.

The insight could aid development of more reliable methods for fabricating lasers, sensors and other devices that exploit quantum dots’ special electronic properties — the result of confining electrons in the space of a few nanometers. The minuscule structures already are the basis for some lasers. Yet, difficulties in making quantum dots of uniform size and precisely positioning them on a substrate remain formidable. These obstacles stand in the way of an array of faster, more powerful electronic and photonic devices that require only small inputs of energy to spring into action.

NIST’s Bo Yang and Vinod Tewary borrowed a mathematical concept that explains how cracks grow in a solid, such as the Earth’s crust or an airplane wing. The concept, called the elastic energy release rate, accounts for how energy is apportioned as a crack advances. The scientists found that the rate also accounts for how self-assembling quantum dots, which strain the system’s lattice-like atomic geometry, will position and align themselves among their neighbors–those next door and those living below. For cube-shaped quantum dots, at least, the equation predicts the most “energetically favorable” location for a quantum dot. The NIST pair says their theory can be used, for example, to predict the optimal depth for embedding quantum dots that will be overlain by another array of dots.

Media Contact

Mark Bello EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…