How To Eliminate Nitrogen Narcosis Effects

We do not feel the nitrogen of air, and scientists do not believe that under normal pressure nitrogen can affect human organisms. However, being under water or in the altitude chamber nitrogen produces a different effect. Once the pressure is increased about four times, simulating the pressure which exists at the 30- meter depth, the first signs of intoxication usually show up. They are the same that accompany alcoholic intoxication: unreasonable gaiety, talkativeness, depressed attention, impaired self-control. When the diver descends even deeper, he can easily overlook a danger and experiences difficulty in controlling his movements. Being intoxicated the diver may forget where he is and what he is doing, and may even endanger his life. It has been recognized for almost 70 years that it is nitrogen that causes this effect, and the phenomenon itself has been called nitrogen narcosis. In order to avoid nitrogen effect, physiologists have developed mixtures for breathing at sea depths. In these mixtures relatively inexpensive nitrogen have been replaced by very expensive helium.

Nevertheless, that did not solve all the problems. Nitrogen narcosis effects may even occur with regular dives at depths of 30-40 meters, where helium is not used in the majority of cases. Therefore, it was required to develop a method which would increase the level if resistance to nitrogen narcosis effects. Such method is under way in the Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, under the guidance of Alexander Vjotosh. The researchers exposed laboratory rats to higher temperatures or kept them in the air with insufficient oxygen content, and the rats became more resistant to the nitrogen narcosis effects – they managed to pass appropriate tests with better results. After a special training course the resistance increased about one and a half times. If divers were to take this training course, they would be exposed to a lesser risk working underwater. The rats’ resistance to nitrogen narcosis was also one and a half times raised due to quercetin action in cases when they had been injected the substance eight hours before the diving.

The researchers from St. Petersburg have come forward with a new hypothesis explaining the nitrogen action under pressure. The generally adopted point of view is that nitrogen dissolves in cells’ membranes, causing the change of their characteristics, thus violating nerve impulses formation or conduct. The physiologists from the Sechenov Institute have assumed that under the nitrogen increased pressure in the organisms there are formed additional portions of the active compound, which damages cell proteins.

Media Contact

Sergey Komarov Informnauka

More Information:

http://www.informnauka.ru

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…