Genetic variants associated with bronchodilator responsiveness

A new study from Brigham and Women's Hospital (BWH) reveals several new gene variants that are associated with how people living with chronic obstructive pulmonary disease (COPD) respond to inhaled bronchodilators.

COPD is a progressive breathing disorder that limits airflow in the lungs. Bronchodilators are medicines used to alleviate respiratory disorder symptoms.

The abstract for this meta-analysis study will be presented at the American Society of Human Genetics 2013 meeting, Oct. 22 to 26 in Boston.

One of the research goals was to identify single nucleotide polymorphisms (SNPs) associated with bronchodilator responsiveness (BDR).

“Identifying single nucleotide polymorphisms associated with bronchodilator responsiveness may reveal genetic pathways associated with the pathogenesis of COPD and may identify novel treatment methods,” said Megan Hardin, MD, BWH Channing Division of Network Medicine, lead study author.

The researchers used statistical methods to combine results from 5,789 Caucasian patients with moderate to severe COPD from four individual studies. The genotypes of over 700 African Americans with COPD were also analyzed.

Most (4,561) of the patients in the four cohorts studied had over 10 pack-years of smoking. The group whose members had greater than 5 pack-years of smoking totaled 364, and the cohort with greater than two and one-half years totaled 864.

All patients were genotyped, and their lung function was tested by spirometry before and after they used the bronchodilator medication albuterol, which relaxes muscles in the airways and increases air flow to the lungs. Spirometry measures the volume and flow of air that is exhaled.

The researchers investigated over 6.3 million unique SNPs from the patients' genotypes. They discovered four novel variants that rarely occur in the general population.

According to Hardin, there may be multiple genetic determinants that likely influence bronchodilator responsiveness. The researchers caution that more extensive functional analysis of the SNPs will be required.

“As we continue to analyze the data, we expect to identify other important SNPs,” said Craig P. Hersh, MD, BWH Channing Division of Network Medicine, senior study author.

Each patient's bronchodilator responsiveness (BDR) was determined by three measures: absolute change in the volume of air exhaled during a forced breath in one second (FEV1) (BDRABS); change as percentage of predicted FEV1 (BDRPRED); and change as percentage of baseline FEV1 (BDRBASE).

The researchers reported that the top SNPs thus far have been associated with each BDR outcome, but emphasized that additional analysis may reveal other SNPs with equally or greater influence on COPD patients' response.

The meta-analysis revealed the top SNPs for each BDR outcome:

SNPs in the:

HS6ST3 gene were associated with BDRBASE
XKR4 gene were associated with BDRPRED and BDRBASE
CUBN gene were associated with BDRABS and BDRPRED
Among African American participants, SNPs in the CDH13 gene were significantly associated with BDRABS.

The cohorts included in the meta-analysis were: ECLIPSE (1,764 patients) and COPDGene (2,797 patients), all of whom had over 10 pack-years of cigarette smoking; NETT (364 patients) with over five pack-years smoking; and GenKOLs (864 patients with over 2.5 pack-years of smoking).

This research was supported by the National Institutes of Health (R01HL094635, R01NR013377, R01HL089856, R01HL089897, P01HL083069). COPDGene was additionally supported by the COPD Foundation. ECLIPSE and GenKOLs were supported by GlaxoSmithKline.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 3.5 million annual patient visits, is the largest birthing center in New England and employs nearly 15,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 1,000 physician-investigators and renowned biomedical scientists and faculty supported by nearly $650 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH continually pushes the boundaries of medicine, including building on its legacy in transplantation by performing a partial face transplant in 2009 and the nation's first full face transplant in 2011. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information and resources, please visit BWH's online newsroom.

Media Contact

Marjorie Montemayor-Quellenberg EurekAlert!

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Nerve cells of blind mice retain their visual function

Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…

State-wide center for quantum science

Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…

Newly designed nanomaterial

…shows promise as antimicrobial agent. Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective…