Two million euros for infection research
What exactly happens there will be investigated by a new research group at the universities of Würzburg and Duisburg-Essen. They will receive around two million euros for their work.
Contacts between pathogens and human cell membranes play a major role in an infection: the viruses or bacteria dock to special receptor proteins there. In so doing, they trigger processes that enable them to penetrate the cell, among other things. But the immune system’s defensive reactions, such as the activation of T cells, are also controlled by these processes.
The receptors often sit in well-defined regions of the cell membrane, where particularly large numbers of sphingolipid molecules are gathered. Simply put, these molecules consist of a head and tail. “If pathogens dock there, an enzyme is activated that decapitates the sphingolipids, creating ceramides,” explains virology professor Sibylle Schneider-Schaulies from the University of Würzburg. This then results in further changes to the membrane.
Sights set on measles viruses and other pathogens
It is precisely these membrane changes that will receive the attention of a new research group approved by the German Research Foundation (DFG) in early December. “We intend to make the changes visible and to observe them,” says the Würzburg virologist: “If we can understand their importance to the disease process, it might be possible to produce new treatments.”
The research group will focus on the following pathogens: measles viruses, meningococci (pathogens that cause meningitis, among other diseases), mycobacteria (tuberculosis), and gonococci (gonorrhea).
Facts about the new research group
Sibylle Schneider-Schaulies is the spokesperson for the new group (“Sphingolipid Dynamics in Infection Control”). It has brought together research teams from the universities of Würzburg and Duisburg-Essen. The DFG will provide the project with around two million euros in funding over the next three years; much of this money will be used to finance doctoral positions.
Research teams involved
From the Institute of Molecular Biology at the University of Duisburg-Essen, the teams led by Heike Grassmé and Professor Erich Gulbins are involved, with the latter also acting as the deputy spokesperson for the research group.
Joining them from the University of Würzburg’s Institute of Virology and Immunobiology are Niklas Beyersdorf, Nora Müller, Jürgen Schneider-Schaulies, and Sibylle Schneider-Schaulies. Also involved are the Würzburg scientists Thomas Rudel (Microbiology/Biocenter), Markus Sauer (Biotechnology and Biophysics/Biocenter), Alexandra Schubert-Unkmeir (Hygiene and Microbiology), and Jürgen Seibel (Organic Chemistry).
Information about DFG research groups
In early December, the DFG set up four new research groups all at the same time (University of Würzburg, University of Bremen, Dresden University of Technology, and Ludwig Maximilian University of Munich). According to a statement by the DFG, research consortia should provide scientists with the opportunity to address current issues in their fields and to develop new methods for tackling them. All DFG research groups work across various locations and disciplines.
Contact
Prof. Dr. Sibylle Schneider-Schaulies, spokesperson for the DFG research group “Sphingolipid Dynamics in Infection Control”, Institute of Virology and Immunobiology, University of Würzburg, T +49 (0)931 31-81566, s-s-s@vim.uni-wuerzburg.de
Media Contact
More Information:
http://www.uni-wuerzburg.deAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…