More than wind in the datacentre
In October 2013 started the project RenewIT, which is funded for three years by the European Union. It explores how data centres can be designed and operated in compliance with a more efficient use of renewable energy.
In addition to partners from Spain, Italy, Great Britain and the Netherlands also the Professorship Technical Thermodynamics of Technische Universität Chemnitz is involved.
“We are focused on cooling techniques and renewable energy sources. The power supply systems shall be designed and simulated for different locations in Europe,” said PD Dr. Thorsten Urbaneck Head of `Thermal Energy Storage´ at the Professorship Technical Thermodynamics.
“Currently, only a minority of European datacentres derive energy from renewable sources. Of those that do, the motivation is usually to gain positive publicity or curry favour with regulators rather than for purely commercial reasons,” said Andrew Donoghue of 451 Research and project spokesperson.
The RenewIT project, co-funded by the EU with a budget of 3.6 million Euros, will develop tools that will help datacentre operators to develop a more compelling business case for using on-site sources of renewable energy – such as solar, wind and biomass – and renewable cooling including outside air cooling and sea water cooling.
“The main roadblocks to using renewable energy to power datacentres are the perceived costs and the lack of tools to help operators make decisions about renewable energy. This project aims to overcome some of these obstacles by designing tools to evaluate the environmental performance and the share of renewable energy sources in the emerging concept of Net Zero Energy datacentres,” added Dr. Jaume Salom of IREC and RenewIT project coordinator.
The main challenges in using renewable energy for datacentre power are cost, capacity, lack of integration and the unreliability of its implementation. For example, existing datacentre infrastructure is geared to a continuous power flow but renewable sources, such as solar and wind, fluctuate depending on the day, time and the season. The RenewIT project plans to develop tools to help match the intermittent flow of energy from onsite renewables with the applications and workloads being executed by the datacentre.
The RenewIT project will focus on five main outcomes:
The RenewIT Tool: This will be a web-based planning tool to help datacentre owners, operators and design organisations understand the economic, energy and sustainability related costs of building a facility that uses a high-proportion of on-site or grid renewable energy.
Workload management and scheduling: RenewIT consortium partner, Barcelona Supercomputing Centre, will lead efforts in this area, developing algorithms for scheduling workloads within a facility, or between facilities using a monitoring and control platform engineered by Loccioni Group.
Develop concepts for integration in datacentres: The team will quantify the benefits of various energy concepts. These concepts will use a holistic approach that integrates various solutions:
– Renewable heat sources (biomass, solar thermal, geothermal)
– Renewable power generation (wind, solar, photovoltaic)
– Renewable cooling (fresh/free air cooling, water, snow, sky radiation)
– Energy storage (daily or seasonal)
– Heat-pumps to increase the temperature of waste heat from datacentres
– Heat re-use and interaction with district heating and cooling systems
– Solar cooling.
Validation of tools with real datacentres: The project will establish a validation process in close collaboration with eight datacentres across Europe to exchange continuous feedback with the technical developers. Based on existing case studies, the validation process will use live datacentres to test the robustness and the end-user applicability of the project’s technical energy concepts and the simulation software tools.
Propose new metrics and contribute to standardisation efforts: RenewIT will contribute to the establishment of a standard approach to datacentre energy evaluation, incorporating infrastructure, equipment and IT workload management and renewables. New ways of evaluating load matching – the relationship between loads, the generation of renewable energy and the grid interaction flexibility – will help operators understand how a particular technical solution can meet the needs of the datacentre and the grid.
The project will also tackle the issue of how to better integrate datacentres with smart cities infrastructure by plugging into smart grid and micro grids, as well as strategies such as redirecting waste heat from datacentres to other businesses and residential accommodation.
RenewIT is made up of both commercial and scientific organisations. It is led by not-for-profit energy research centre Catalonia Institute for Energy Research (IREC). The other members are 451 Research, Barcelona Supercomputing Center (BSC), Loccioni Group of Italy, AIGUASOL, Amsterdam-based datacentre design specialist DEERNS, and Technische Universität Chemnitz, Professorship Technical Thermodynamics. The organisations bring a range of expertise to the project including green IT (IREC), renewable energy systems (AIGUASOL) and energy storage (Technische Universität Chemnitz), datacentre monitoring (Loccioni), workload and application energy management (BSC) and energy efficient datacentre design (DEERNS).
RenewIT is one of six projects funded by the EU under its Framework Programme 7 (FP7) initiative. The other projects are DOLFIN, GENiC, GEYSER, GreenDataNet andDC4Cities. The goal of these projects is to develop research and commercial tools to help increase the proportion of renewable energy generated and used by datacentres.
For further information about the involvement of TU Chemnitz, please contact PD Dr. Thorsten Urbaneck, phone 0371 531-32463, e-mail: thorsten.urbaneck@mb.tu-chemnitz.de.
Media Contact
More Information:
http://www.tu-chemnitz.de/tu/presseAll latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…