Mobile phone data helps combat malaria

The study used anonymised mobile records to measure population movements within Namibia in Africa over the period of a year (2010-11). By combining this data with information about diagnosed cases of malaria, topography and climate, the researchers have been able to identify geographical 'hotspots' of the disease and design targeted plans for its elimination.

Geographer at the University of Southampton Dr Andy Tatem says: “Understanding the movement of people is crucial in eliminating malaria. Attempts to clear the disease from an area can be ruined by highly mobile populations quickly reintroducing the parasite which causes malaria.

“If we are to eliminate this disease, we need to deploy the right measures in the right place, but figures on human movement patterns in endemic regions are hard to come by and often restricted to local travel surveys and census-based migration data.

“Our study demonstrates that the rapid global proliferation of mobile phones now provides us with an opportunity to study the movement of people, using sample sizes running in to millions. This data, combined with disease case based mapping, can help us plan where and how to intervene.”

Twelve months of anonymised Call Data Records (CDRs) were provided by service provider Mobile Telecommunications Limited (MTC) to the researchers (see note 1 for a full list of partners) – representing nine billion communications from 1.19 million unique subscribers, around 52 per cent of the population of Namibia. Aggregated movements of mobile users between urban areas and urban and rural areas were analysed in conjunction with data based on rapid diagnostic testing (RDT) of malaria and information on the climate, environment and topography of the country.

The results of the study help the NVDCP in Namibia improve their targeting of malaria interventions to communities most at risk. Specifically they have helped with the targeting of insecticide-treated bed net distributions in the Omusati, Kavango and Zambezi regions in 2013, and will continue to help the NVDCP prepare for a large-scale net distribution in 2014 and deployment of community health workers.

Dr Tatem comments: “The importation of malaria from outside a country will always be a crucial focus of disease control programmes, but movement of the disease within countries is also of huge significance. Understanding the human element of this movement should be a critical component when designing elimination strategies – to help target resources most efficiently.

“The use of mobile phone data is one example of how new technologies are overcoming past problems of quantifying and gaining a better understanding of human movement patterns in relation to disease control.”

###

The paper Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning is published in the Malaria Journal and can be found at: http://www.malariajournal.com/content/13/1/52.

Notes for editors:

1) Full list of study partners:

Department of Geography and Environment, University of Southampton, UK
http://www.southampton.ac.uk/geography

Flowminder Foundation, 17177 Stockholm, Sweden
http://www.flowminder.org

Fogarty International Center, National Institutes of Health, Bethesda, USA
http://www.fic.nih.gov/Pages/Default.aspx

Department of Geography, University of Florida, Gainesville, USA
http://geog.ufl.edu/

Emerging Pathogens Institute, University of Florida, Gainesville, USA
http://epi.ufl.edu/

National Vector-borne Disease Control Program, Windhoek, Namibia
https://extranet.sadc.int/files/9913/1711/8965/10-1314-Malaria_Strategic_Plan.pdf

Department of Computer Science, University of Florida, Gainesville, USA
http://www.cise.ufl.edu

Clinton Health Access Initiative, Boston, USA
http://www.clintonhealthaccess.org

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
http://www.jhsph.edu/departments/epidemiology

Mobile Telecommunications Limited, Windhoek, Namibia
http://www.mtc.com.na/home

2) The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.

With over 23,000 students, around 5000 staff, and an annual turnover well in excess of £435 million, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning. http://www.southampton.ac.uk

3) For more information about Geography at the University of Southampton visit: http://www.southampton.ac.uk/geography

Media Contact

Peter Franklin Eurek Alert!

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Compact LCOS Microdisplay with Fast CMOS Backplane

…for High-Speed Light Modulation. Researchers from the Fraunhofer Institute for Photonic Microsystems IPMS, in collaboration with HOLOEYE Photonics AG, have developed a compact LCOS microdisplay with high refresh rates that…

New perspectives for material detection

CRC MARIE enters third funding period: A major success for terahertz research: Scientists at the University of Duisburg-Essen and the Ruhr University Bochum have been researching mobile material detection since…

CD Laboratory at TU Graz Researches New Semiconductor Materials

Using energy- and resource-saving methods, a research team at the Institute of Inorganic Chemistry at TU Graz aims to produce high-quality doped silicon layers for the electronics and solar industries….