Study provides new approach to forecast hurricane intensity

This is the one-of-a-kind, Alfred C. Glassell, Jr., SUSTAIN research facility at the UM Rosenstiel School of Marine and Atmospheric Science, where Haus and colleagues will conduct further studies on hurricane intensity prediction. Credit: UM Rosenstiel School of Marine and Atmospheric Science

New research from University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science suggests that physical conditions at the air-sea interface, where the ocean and atmosphere meet, is a key component to improve forecast models. The study offers a new method to aid in storm intensity prediction of hurricanes.

“The general assumption has been that the large density difference between the ocean and atmosphere makes that interface too stable to effect storm intensity,” said Brian Haus, UM Rosenstiel School professor of ocean sciences and co-author of the study. “In this study we show that a type of instability may help explain rapid intensification of some tropical storms.”

Experiments conducted at the UM Rosenstiel School Air-Sea Interaction Salt Water Tank (ASIST) simulated the wind speed and ocean surface conditions of a tropical storm. The researchers used a technique called “shadow imaging,” where a guided laser is sent through the two fluids – air and water – to measure the physical properties of the ocean's surface during extreme winds, equivalent to a category-3 hurricane.

Using the data obtained from the laboratory experiments conducted with the support of the Gulf of Mexico Research Initiative (GOMRI) through the CARTHE Consortium, the researchers then developed numerical simulations to show that changes in the physical stress at the ocean surface at hurricane force wind speeds may explain the rapid intensification of some tropical storms.

The research team's experimental simulations show that the type of instability, known as Kelvin-Helmoltz instability, could explain this intensification.

Haus and colleagues will conduct further studies on hurricane intensity prediction in the new, one-of-a-kind Alfred C. Glassell, Jr., SUSTAIN research facility located at the UM Rosenstiel School. The SUrge-STructure-Atmosphere INteraction laboratory is the only facility capable of creating category-5 level hurricanes in a controlled, seawater laboratory.

The nearly 65-foot long tank allows scientists to simulate major hurricanes using a 3-D wave field to expand research on the physics of hurricanes and the associated impacts of severe wind-driven and wave-induced storm surges on coastal structures.

The SUSTAIN research facility is the centerpiece of the new $45 million Marine Technology and Life Sciences Seawater Complex at the UM Rosenstiel School where scientists from around the world have access to state-of-the-art seawater laboratories to conduct an array of marine-related research.

The study, titled “The air-sea interface and surface stress under tropical cyclones” was published in the June 16 issue of the journal Nature Scientific Reports. The paper's lead author was Alex Soloviev of the UM Rosenstiel School and Nova Southeastern University Oceanographic Center and its co-authors include: Mark A. Donelan from the UM Rosenstiel School; Roger Lukas of the University of Hawaii; and Isaac Ginis from the University of Rhode Island.

###

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Media Contact

Diana Udel Eurek Alert!

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Global effort to map the human brain releases first data

The BICAN Rapid Release Inventory provides early access to comprehensive single-cell data, aiming to accelerate brain research. The BRAIN Initiative® Cell Atlas Network (BICAN) has launched its first major data…

Modeling the minutia of motor manipulation with AI

An AI research collaboration led by EPFL professor Alexander Mathis creates a model which provides deep insights into hand movement, which is an essential step for the development of neuroprosthetics…

Reporter Skin

In-vitro Skin Makes Cell Reaction to Test Substance Measurable in Real Time. The EU has banned animal testing for cosmetics and non-animal alternative methods are preferable for the risk assessment…

Partners & Sponsors