Stay south of thunderstorm paths, says Purdue scientist
Damaging winds can occur in previously overlooked places within a thunderstorm, according to a Purdue University earth scientist. The finding could help meteorologists save lives and reduce injuries by issuing more accurate storm warnings.
Based on new data on the behavior of winds in developing storms, Purdues Robert J. “Jeff” Trapp has found that the north side of a storm front can host cyclonic winds that are more intense than those at the storms “apex,” or leading point, which is generally thought to usher in the strongest winds. These newly found whirlpools of wind can be miles wide and create gusts reaching 100 miles per hour.
“On average, whatever lies in the path of the apex suffers wind damage,” said Trapp, who is an associate professor of earth science in Purdues School of Science. “However, its not the whole story. Meteorologists should be aware of these other vortices in order to present the full picture of a storm front.”
The study appears in this months Monthly Weather Review. It was co-authored by Morris Weisman of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., where the team conducted computer simulations that contributed to their research.
Using a supercomputer at NCAR, the team initially set out to look at the tornadoes that can form along a fronts leading edge, often called the squall line. These tornadoes are particularly dangerous because of how difficult they are to predict. But what the researchers found in their simulations were much larger vortices that can form at the squall line north of the apex.
“If youve watched a weather programs time-lapse animation of a storms development, youve seen a squall line as a long, generally north-to-south bank of precipitation,” Trapp said. “While the edges of these fronts can resemble straight lines at first, as storms grow in strength a front can look more like a boomerang, with the storms apex forming the point.”
Trapp said it is north of this “point” that the vortices generally develop.
“These strong, spinning winds can do great damage over large areas,” Trapp said. “They are not tornadoes themselves, but tornadoes can develop from them. We plan to research how this happens as well.”
The vortices form only on the north side of the apex because of the spinning of the earth, which tends to deter vortices from forming on the south side.
“The effect of this force, called the Coriolis force, is usually neglected in discussions of thunderstorms,” Trapp said. “But out work shows that it is critical to the formation of the damaging vortices in squall lines.”
After seeing the vortices form in the simulation, Trapp, Weisman and numerous colleagues across the country observed them in many storms in the Midwest during a recent field program called BAMEX. Trapp said he thinks the reason these vortices have been overlooked in the past is because tracks of storm damage are seldom related back to weather radar images, particularly Doppler radar images, which can indicate the presence of vortices. Special data collected during the BAMEX program will provide Trapp and his colleagues the opportunity to do just that.
Trapp said existing technology could be modified to predict this newly found danger.
“The Doppler radars in use around the U.S., known as Nexrads, can be used to detect these vortices,” he said. “Its just a matter of adapting the computer software that sorts through the Nexrad data to this problem.”
The next step for Trapp and Weisman is to head back to the simulator and attempt to create more sophisticated computer models of the vortices.
“We still have a lot to learn,” he said. “Our explanations need to be modified to take into account all the possible real-world factors that we neglected in our initial models. Until we have more specific answers, the most useful thing we can do is simply make meteorologists aware of what could happen and tell them to be on the lookout for it.”
This study was funded in part by a grant from the National Science Foundation and by the National Severe Storms Laboratory.
Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Robert “Jeff” Trapp, (765) 496-6661, jtrapp@purdue.edu
Media Contact
More Information:
http://news.uns.purdue.edu/UNS/html4ever/031117.Trapp.vortex.htmlAll latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
Largest magnetic anisotropy of a molecule measured at BESSY II
At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a…
Breaking boundaries: Researchers isolate quantum coherence in classical light systems
LSU quantum researchers uncover hidden quantum behaviors within classical light, which could make quantum technologies robust. Understanding the boundary between classical and quantum physics has long been a central question…
MRI-first strategy for prostate cancer detection proves to be safe
Active monitoring is a sufficiently safe option when prostate MRI findings are negative. There are several strategies for the early detection of prostate cancer. The first step is often a…