'Data smashing' could unshackle automated discovery

From recognizing speech to identifying unusual stars, new discoveries often begin with comparison of data streams to find connections and spot outliers.

But most data comparison algorithms today have one major weakness – somewhere, they rely on a human expert to specify what aspects of the data are relevant for comparison, and what aspects aren't. But experts aren't keeping pace with the growing amounts and complexities of big data.

Cornell computing researchers have come up with a new principle they call “data smashing” for estimating the similarities between streams of arbitrary data without human intervention, and without access to the data sources. Hod Lipson, associate professor of mechanical engineering and computing and information science, and Ishanu Chattopadhyay, a former postdoctoral associate with Lipson and now at the University of Chicago, have described their method in Royal Society Interface, Oct. 1.

Data smashing is based on a new way to compare data streams. The process involves two steps. First, the data streams are algorithmically “smashed” to “annihilate” the information in each other. Then, the process measures what information remained after the collision. The more information remained, the less likely the streams originated in the same source.

Data smashing principles may open the door to understanding increasingly complex observations, especially when experts do not know what to look for, according to the researchers.

The authors demonstrated the application of their principle to data from real-world problems, including the disambiguation of electroencephalograph patterns from epileptic seizure patients; detection of anomalous cardiac activity from heart recordings; and classification of astronomical objects from raw photometry.

In all cases and without access to original domain knowledge, the researchers demonstrated performance on par with the accuracy of specialized algorithms and heuristics devised by experts.

###

The work in the paper, “Data smashing: Uncovering lurking order in data,” was supported by the Defense Advanced Research Projects Agency and the U.S. Army Research Office.

Study: http://rsif.royalsocietypublishing.org/content/11/101/20140826.full

Media Contact

Syl Kacapyr Eurek Alert!

More Information:

http://www.cornell.edu

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…