Combating Bacteria Via Silver-Dammar Coating
Coating systems are formulated using a mixture of dammar, silver and nanoclay in varied compositions. Generally the problems in the coating area are poor coat quality, poor adhesion, long curing time period, corrosion attack, attachment or bacteria attack which could also cause corrosion attack which is called as Microbiologically Influenced corrosion (MIC). These disadvantages of coating system and coating surface could lead to coating failure thus leading to substrate damage especially metal substrate.
Materials: Dammar or triterpenoids resin are natural resins which can be isolated or obtained from plants that belong to the family Dipterocaupecea sp. Dammar is well known for its glossy properties and the plant can be found abundantly in Sarawak, Malaysia. Thus, it can be used in the coating industry. The role of the dammar is to improve the adhesion property, self cleansing property and shorten the coating curing time. Silver nitrate has quite a long history of usage as an antibacterial agent.
Silver possesses good antibacterial activity. The addition of silver onto the coating system, introduces the antimicrobial property for the coating system. It is used in a variety of applications for example as protective coating for concrete, brick, wood, metal and others. It is considered as a good anti-microbial coating due to its low toxicity to where the toxicity is lower than of bacteria. However, the antibacterial activity depends on the Ag+ ions released by the silver.
If it is too high, it will result in cytotoxicity. Thus to overcome this problem nanoclay was added into the coating system. Clay is a good absorbent which belongs to the phyllosilicate group. In this case Montmorillonite clay was used as the absorbent. Montmorillonite clay form could absorb compound and store it in the pore without leaching out the compound to the surrounding environment.
Methodology: In this research work, the polyol is modified by using a solvent and mixed with dammar in varied compositions. Silver nitrate is incorporated into the optimum composition of polyol-dammar, followed by a small amount of Nano clay is dispersed into the modified Silver-polyol-dammar mixture. Then the paint mixture is spin coated onto polished Aluminium Q-panel as a substrate and is left to dry at room temperature.
This research describes the characteristics of the dammar based paint system. Adhesion property is evaluated by using crosshatch test and pull-off test. The crosshatch test method is based on ASTM D3359 standards. The wettability property of a coating is characterized by using contact angle measurement. The resistances of paint systems are also described against microbial activity by using disc diffusion and agar well diffusion method.
The results: The result of crosshatch and pull-off test shows that the coating system containing 50 wt. % of dammar (50 PD) exhibits an excellent adhesion property. The addition of dammar to polyol helps to increase the contact angle measurement up to approximately 50 degrees. The antimicrobial activity of silver nanoclay coating was demonstrated by using disc diffusion and agar well diffusion method.
The antimicrobial activity was evaluated against a few negative gram bacteria and positive gram bacteria. K. pneumoniae, E. coli, S. aureus, P. aeruginosa and B. subtilis. Moreover it is also tested against fungi, C. albicans (fungi). The largest inhibition diameter zone against E. coli and S. aureus is obtained for the silver nanoclay polyol dammar, namely PDS3 coating system.
Azizah Hanom Binti Ahmad
Institute of Science (IOS),
UiTM Shah Alam, Selangor Darul Ehsan,
Malaysia
Email: azizahanom@salam.uitm.edu.my
Media Contact
All latest news from the category: Process Engineering
This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).
Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.
Newest articles
Can lab-grown neurons exhibit plasticity?
“Neurons that fire together, wire together” describes the neural plasticity seen in human brains, but neurons grown in a dish don’t seem to follow these rules. Neurons that are cultured…
Unlocking the journey of gold through magmatic fluids
By studying sulphur in magmatic fluids at extreme pressures and temperatures, a UNIGE team is revolutionising our understanding of gold transport and ore deposit formation. When one tectonic plate sinks…
3D concrete printing method that captures carbon dioxide
Scientists at Nanyang Technological University, Singapore (NTU Singapore) have developed a 3D concrete printing method that captures carbon, demonstrating a new pathway to reduce the environmental impact of the construction…